FREE $(n, n+k)$-SEMIGROUPS

Dončo Dimovski

Abstract: In this paper we introduce the notion of $(n, n+k)$ semigroups, prove some properties about them, and give an algorithmic description of a free $(n, n+k)$-semigroup with a given basis.

Key words: $(n, n+k)$-semigroups; free $(n, n+k)$-semigroups

1. $(n, n+k)$-SEMIGROUPS

Definition 1. Let $n, k \in \mathbb{N}$, and let $G \neq \varnothing$. If $f: G^{n} \rightarrow G^{n+k}$, then we say that f is na $(n, n+k)$-operation, and that the pair (G, f) is an $(n, n+k)$ groupoid. An $(n, n+k)$-groupoid is called $(n, n+k)$-semigroup, if for each integer $0 \leq p \leq k$,

$$
\left(1^{p} \times f \times 1^{k-p}\right) \circ f=\left(1^{k} \times f\right) \circ f
$$

where $1^{p} \times f \times 1^{k-p}: G^{n+k} \rightarrow G^{n+2 k}$ is defined by:

$$
1^{p} \times f \times 1^{k-p}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})=(\boldsymbol{u}, f(\boldsymbol{v}), \boldsymbol{w})
$$

for each $\boldsymbol{u} \in G^{p}, \boldsymbol{v} \in G^{n}$, and $\boldsymbol{w} \in G^{k-p}$.
Example 1. Let $n=1, k=1, G=\{a, b, c\}$, and let $f: G^{1} \rightarrow G^{2}$ be defined by: $f(a)=(b, c), f(b)=(b, d), f(c)=(d, c)$ and $f(d)=(d, d)$. From the definition it follows that:

$$
\begin{aligned}
& \left(f \times 1^{1}\right) \circ f(a)=\left(f \times 1^{1}\right)(b, c)=(b, d, c)=\left(1^{1} \times f\right)(b, c)=\left(1^{1} \times f\right) \circ f(a) \\
& \left(f \times 1^{1}\right) \circ f(b)=\left(f \times 1^{1}\right)(b, d)=(b, d, d)=\left(1^{1} \times f\right)(b, d)=\left(1^{1} \times f\right) \circ f(b) \\
& \left(f \times 1^{1}\right) \circ f(c)=\left(f \times 1^{1}\right)(d, c)=(d, d, c)=\left(1^{1} \times f\right)(d, c)=\left(1^{1} \times f\right) \circ f(c) \\
& \left(f \times 1^{1}\right) \circ f(d)=\left(f \times 1^{1}\right)(d, d)=(d, d, d)=\left(1^{1} \times f\right)(d, d)=\left(1^{1} \times f\right) \circ f(d) .
\end{aligned}
$$

This shows that $\left(f \times 1^{1}\right) \circ f=\left(1^{1} \times f\right) \circ f$, i.e. that (G, f) is a $(1,2)$-semigroup.
From now on, let (G, f) be an $(n, n+k)$-semigroup.
We define $f^{1}=f$, and $f^{2}=\left(1^{k} \times f\right) \circ f: G^{n} \rightarrow G^{n+2 k}$. The condition that (G, f) is an $(n, n+k)$-semigroup can be stated as: $\left(1^{p} \times f \times 1^{k-p}\right) \circ f=f^{2}$, for each $0 \leq p \leq k$.

Proposition 1. For any two integers $p, q, 0 \leq p \leq k$ and $0 \leq q \leq 2 k$,

$$
\left(1^{p} \times f^{2} \times 1^{k-p}\right) \circ f=\left(1^{q} \times f \times 1^{2 k-q}\right) \circ f^{2} .
$$

Proof. (a) $\left(1^{p} \times f^{2} \times 1^{k-p}\right) \circ f=\left(1^{p} \times\left(\left(1^{k-p} \times f \times 1^{p}\right) \circ f\right) \times 1^{k-p}\right) \circ f$ $=\left(1^{p} \times 1^{k-p} \times f \times 1^{p} \times 1^{k-p}\right) \circ\left(1^{p} \times f \times 1^{k-p}\right) \circ f$
$=\left(1^{k} \times f \times 1^{k}\right) \circ\left(\left(1^{p} \times f \times 1^{k-p}\right) \circ f\right)$
$=\left(1^{k} \times f \times 1^{k}\right) \circ f^{2}=\left(1^{k} \times f \times 1^{k}\right) \circ\left(\left(1^{k} \times f\right) \circ f\right)=\left(\left(1^{k} \times f \times 1^{k}\right) \circ\left(1^{k} \times f\right)\right) \circ f$ $=\left(1^{k} \times\left(\left(f \times 1^{k}\right) \circ f\right)\right) \circ f=\left(1^{k} \times f^{2}\right) \circ f$.
(b) In (a) we have proved that

$$
\left(1^{k} \times f \times 1^{k}\right) \circ f^{2}=\left(1^{k} \times f^{2}\right) \circ f=\left(1^{p} \times f^{2} \times 1^{k-p}\right) \circ f,
$$

i.e. we have proved the Proposition for $q=k$.
(c) Next, let $q \neq k$.

If $q<k$, then $2 k-q=k+(k-q), 0<k-q<k$, and

$$
\begin{aligned}
& \left(1^{q} \times f \times 1^{2 k-q}\right) \circ f^{2}=\left(1^{q} \times f \times 1^{2 k-q}\right) \circ\left(1^{q} \times f \times 1^{k-q}\right) \circ f \\
& =\left(1^{q} \times f \times 1^{k} \times 1^{k-q}\right) \circ\left(1^{q} \times f \times 1^{k-q}\right) \circ f
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1^{q} \times\left(\left(f \times 1^{k}\right) \circ f\right) \times 1^{k-q}\right) \circ f=\left(1^{q} \times\left(\left(1^{k} \times f\right) \circ f\right) \times 1^{k-q}\right) \circ f \\
& =\left(1^{q} \times f^{2} \times 1^{k-q}\right) \circ f=\left(1^{k} \times f^{2}\right) \circ f=\left(1^{p} \times f^{2} \times 1^{k-p}\right) \circ f
\end{aligned}
$$

If $q>k$, then $q=k+(q-k), 2 k-q<k, 0<q-k<k$, and

$$
\left(1^{q} \times f \times 1^{2 k-q}\right) \circ f^{2}=\left(1^{q} \times f \times 1^{2 k-q}\right) \circ\left(1^{q-k} \times f \times 1^{2 k-q}\right) \circ f
$$

$$
=\left(1^{q-k} \times 1^{k} \times f \times 1^{2 q-k}\right) \circ\left(1^{q-k} \times f \times 1^{2 k-q}\right) \circ f
$$

$$
=\left(1^{q-k} \times\left(\left(1^{k} \times f\right) \circ f\right) \times 1^{2 k-q}\right) \circ f=\left(1^{q-k} \times f^{2} \times 1^{2 k-q}\right) \circ f
$$

$$
=\left(1^{k} \times f^{2}\right) \circ f=\left(1^{p} \times f^{2} \times 1^{k-p}\right) \circ f .
$$

We define $f^{3}=\left(1^{k} \times f^{2}\right) \circ f: G^{n} \rightarrow G^{n+3 k}$. Then Proposition 1 can be restated as:

Proposition 1'. For any two integers $p, q, 0 \leq p \leq k$ and $0 \leq q \leq 2 k$,

$$
\left(1^{p} \times f^{2} \times 1^{k-p}\right) \circ f=f^{3}=\left(1^{q} \times f \times 1^{2 k-q}\right) \circ f^{2}
$$

Next we continue by induction. Let $f^{t-1}: G^{n} \rightarrow G^{n+(t-1) k}$ be defined, and let for any two integers $p, q, 0 \leq p \leq k$ and $0 \leq q \leq(t-1) k$,

$$
\left(1^{p} \times f^{t-1} \times 1^{k-p}\right) \circ f=\left(1^{q} \times f \times 1^{(t-1) k-q}\right) \circ f^{t-1} .
$$

We define $f^{t}=\left(1^{k} \times f^{t-1}\right) \circ f: G^{n} \rightarrow G^{n+t k}$.

Proposition 2. For any two integers $p, q, 0 \leq p \leq k$ and $0 \leq q \leq t k$,

$$
\left(1^{p} \times f^{t} \times 1^{k-p}\right) \circ f=\left(1^{q} \times f \times 1^{t k-q}\right) \circ f^{t}
$$

Proof. (a) $\left.\left(1^{p} \times f^{t} \times 1^{k-p}\right) \circ f=\left(1^{p} \times\left(1^{k-p} \times f^{t-1} \times 1^{p}\right) \circ f\right) \times 1^{k-p}\right) \circ f$
$=\left(1^{p} \times 1^{k-p} \times f^{t-1} \times 1^{p} \times 1^{k-p}\right) \circ\left(1^{p} \times f \times 1^{k-p}\right) \circ f$
$=\left(1^{k} \times f^{t-1} \times 1^{k}\right) \circ\left(1^{p} \times f \times 1^{k-p}\right) \circ f=\left(1^{k} \times f^{t-1} \times 1^{k}\right) \circ f^{2}$
$=\left(1^{k} \times f^{t-1} \times 1^{k}\right) \circ\left(\left(1^{k} \times f\right) \circ f\right)=\left(\left(1^{k} \times f^{t-1} \times 1^{k}\right) \circ\left(1^{k} \times f\right)\right) \circ f$
$=\left(1^{k} \times\left(\left(f^{t-1} \times 1^{k}\right) \circ f\right)\right) \circ f=\left(1^{k} \times\left(\left(1^{k} \times f^{t-1}\right) \circ f\right)\right) \circ f=\left(1^{k} \times f^{t}\right) \circ f$.
(b) Next, let $q=s k+r$, where $s<t$ and $0 \leq r \leq k$. Then:

$$
\begin{aligned}
& \left(1^{q} \times f \times 1^{t k-q}\right) \circ f^{t}=\left(1^{r} \times 1^{s k} \times f \times 1^{(t-s-1) k} \times 1^{k-r}\right) \circ f^{t} \\
& =\left(1^{r} \times\left(1^{s k} \times f \times 1^{(t-s-1) k}\right) \times 1^{k-r}\right) \circ\left(\left(1^{r} \times f^{t-1} \times 1^{k-r}\right) \circ f\right) \\
& =\left(\left(1^{r} \times\left(1^{s k} \times f \times 1^{(t-s-1) k}\right) \times 1^{k-r}\right) \circ\left(1^{r} \times f^{t-1} \times 1^{k-r}\right)\right) \circ f \\
& =\left(1^{r} \times\left(\left(1^{s k} \times f \times 1^{(t-s-1) k}\right) \circ f^{t-1}\right) \times 1^{k-r}\right) \circ f \\
& =\left(1^{r} \times f^{t} \times 1^{k-r}\right) \circ f=\left(1^{k} \times f^{t}\right) \circ f
\end{aligned}
$$

The aim of this paper is to give a description of a free $(n, n+k)$ semigroup with a given basis A.

Example 2. The (1, 2)-semigroup (G, f) in Example 1, is a free (1, 2)semigroup with a basis $\{a\}$. Let as show this. Let (H, h) be a (1,2)-semigroup, $\psi:\{a\} \rightarrow H$ be a given map, $a^{\prime}=\psi(a), h\left(a^{\prime}\right)=\left(b^{\prime}, c^{\prime}\right), h\left(b^{\prime}\right)=\left(x^{\prime}, y^{\prime}\right)$, and $h\left(c^{\prime}\right)=\left(u^{\prime}, v^{\prime}\right)$. Since (H, h) is a (1,2)-semigroup, it follows that $x^{\prime}=b^{\prime}, y^{\prime}=u^{\prime}$ and $v^{\prime}=c^{\prime}$. We extend ψ to the map $\varphi: G \rightarrow H$ defined by $\varphi(b)=b^{\prime}, \varphi(c)=c^{\prime}$ and $\varphi(d)=d^{\prime}$. This extension is a (1,2)-homomorphism, and is unique with this property.

In the next example we will explain the main idea for the rest of the paper.

Example 3. Let (G, f) be a $(2,3)$-semigroup, $\boldsymbol{x} \in G^{2}$ and $f(\boldsymbol{x})=(a, b$, c). Then, using Propositons 1 and 2, it follows that:

$$
\begin{aligned}
& f((a, b))=(a, u, v), f((b, c))=(u, v, c), f((a, u))=(a, u, w), \\
& f((v, c))=(w, v, c), f((u, v))=(u, w, v), f((a, b))=(a, u, v), \\
& f((u, w))=(u, w, w), f((w, v))=(w, w, v), \text { and } f((w, w))=(w, w, w) .
\end{aligned}
$$

This shows that for a given $\boldsymbol{x} \in G^{2}$, after several steps no new elements appear in the images $f^{t}(\boldsymbol{x})$. In this example, in the images $f^{t}(\boldsymbol{x})$ there are at most 6 elements. In the following paragraph, we will construct elements that will appear in the images $f^{t}(x)$.

2. CONSTRUCTION 1

Let $n, k, s \in \mathbb{N}$ such that $(s-2) k<n \leq(s-1) k<n+k \leq s k$.

Definition 2. Let x be an element from a set A. We define two sets: $D(x) \subseteq A \times \mathbb{N} \times \mathbb{N}$ and $E(x) \subseteq\{0\} \times A \times \mathbb{N} \times \mathbb{N}$ by:
$D(x)=\{(x, j, i) \mid 1 \leq j \leq s, 1 \leq i \leq n+2 k-j k\}=D$,
$E(x)=\{(0, x, j, i) \mid 1 \leq j, 1 \leq i \leq n+j k\}=E$.

Definition 3. We define a map $\varphi: E(x) \rightarrow D(x)$ as follows:
For $1 \leq t \leq s$:
$\varphi((0, x, t, i))= \begin{cases}(x, j, i-j k+k) & \text { for } j k-k<i \leq j k, 1 \leq j<t \\ (x, t, i-t k+k) & \text { for } t k-k<i \leq n+k \\ (x, t-j, i-t k+k) & \text { for } n+j k<i \leq n+j k+k, 1 \leq j<t\end{cases}$
For $1 \leq r$:
$\varphi((0, x, s+r, i))= \begin{cases}\varphi((0, x, s, i)) \quad \text { for } 1 \leq i \leq s k \\ \varphi((0, x, s, i-j k)) & \text { for } s k+j k-k<i \leq s k+j k, 1 \leq j \leq r \\ \varphi((0, x, s, i-r k)) & \text { for } s k+r k<i \leq n+s k+r k\end{cases}$

Proposition 3. For any $n<i \leq s k-k$,

$$
\varphi((0, x, s, i))=\varphi((0, x, s, i+k)) .
$$

Proof. Since $n<i \leq s k-k$, it follows that $n+k<i+k \leq s k-k+k=s k$ $\leq n+2 k-1<n+2 k$. So, the definition of φ for $n+j k<i+k \leq n+j k+k, j=1$, implies that:

$$
\varphi((0, x, s, i+k))=(x, s-1, i+k-s k+k)=(x, s-1, i-s k+2 k)
$$

On the other hand, $n<i \leq s k-k$, implies that $s k-2 k<n<i \leq s k-k$, i.e. $j k-k<i \leq j k$ for $j=s-1$. So, the definition of φ for s, implies that:

$$
\varphi((0, x, s, i))=(x, s-1, i-(s-1) k+k)=(x, s-1, i-s k+2 k) .
$$

Proposition 4.

(1) $\varphi((0, x, t+1, i))=\varphi((0, x, t, i))$, for any $1 \leq i<t k$, and
(2) $\varphi((0, x, t+1, i+k))=\varphi((0, x, t, i))$, for any $n<i \leq n+t k$.

Proof. (1) For $t \leq s-1$, since $i \leq t k<(t+1) k$, from the definiton we have that:

$$
\varphi((0, x, t+1, i))=(x, j, i-j k+k), j k-k<i \leq j k, 1 \leq j \leq t<t+1 ;
$$

$$
\varphi((0, x, t, i))=(x, j, i-j k+k)), j k-k<i \leq j k, 1 \leq j<t .
$$

For $t k-k<i \leq t k$, since $t \leq s-1$ it follows that $t k-k<i \leq(s-1) k \leq n+k$, and so:

$$
\varphi((0, x, t, i))=(x, t, i-t k+k))=\varphi((0, x, t+1, i)) .
$$

For $t=s$, since $i \leq t k=s k$, from the definiton we have that:

$$
\varphi((0, x, s+1, i))=\varphi((0, x, s, i)) .
$$

For $t>s, t=s+r$, for some $r>0$. Since $i \leq s k+r k$ from the definition we have:
$\varphi((0, x, t+1, i))=\varphi((0, x, s, i))$, when $i \leq s k$, and
$\varphi((0, x, t+1, i))=\varphi((0, x, s, i-j k))$, when $s k+j k-k<i \leq s k+j k$, $1 \leq j \leq r$.
Similarly,
$\varphi((0, x, t, i))=\varphi((0, x, s, i))$, when $i \leq s k$, and
$\varphi((0, x, t, i))=\varphi((0, x, s, i-j k))$, when $s k+j k-k<i \leq s k+j k, 1 \leq j \leq r$.
Hence, for any $1 \leq i<t k, \varphi((0, x, t+1, i))=\varphi((0, x, t, i))$.
(2) For $t \leq s-1$, since $n+k<i+k$, from the definition we have that:
$\varphi((0, x, t+1, i+k))=(x, t+1-j, i+k-t k-k+k)$,
for $n+j k<i+k \leq n+j k+k$, and $1 \leq j \leq t<t+1 ; \quad$ and
$\varphi((0, x, t, i))=(x, t-(j-1), i-t k+k)$,
for $n+(j-1) k<i \leq n+(j-1) k+k$, and $1 \leq j-1<t$.
For $n<i \leq n+k$, since $t k-k \leq s k-k-k<n$ from the definition we have that
$\varphi((0, x, t, i))=(x, t, i-t k+k)=(x, t-(j-1), i-t k+k)$.
For $t=s$,

$$
\varphi((0, x, t+1, i+k))= \begin{cases}\varphi((0, x, s, i+k)) & \text { for } n+k<i+k \leq s k \\ \varphi((0, x, s, i+k-k)) & \text { for } s k+k<i+k \leq n+s k+k \\ \varphi((0, x, s, i+k-k)) & \text { for } s k<i+k \leq s k+k\end{cases}
$$

Since for $n+k<i+k \leq s k, n<i \leq s k-k$, Proposition 3 implies that $\varphi((0, x, s, i+k))=\varphi((0, x, s, i))$.

For $t>s, t=s+r$ for some $r>0$. Since $n+k<i+k \leq s k+r k$ from the definition we have:

$$
\varphi((0, x, t+1, i+k))=\left\{\begin{array}{lc}
\varphi((0, x, s, i+k)) & \text { for } n+k<i+k \leq s k \\
\varphi((0, x, s, i-r k)) & \text { for } s k+r k<i \leq n+s k+r k \\
\varphi((0, x, s, i+k-j k)) & \text { for } s k+j k-k<i+k \leq s k+j k
\end{array}\right.
$$

$$
\text { and } 1 \leq j \leq r+1
$$

$$
\varphi((0, x, t, i))= \begin{cases}\varphi((0, x, s, i)) & \text { for } n<i \leq(s-1) k \\ \varphi((0, x, s, i-r k)) & \text { for } s k+r k<i \leq n+s k+r k \\ \varphi((0, x, s, i-(j-1) k)) & \text { for } s k+j k-2 k<i \leq s k+j k-k\end{cases}
$$

$$
\text { and } 2 \leq j \leq r+1
$$

and

$$
\varphi((0, x, t, i))=\varphi((0, x, s, i)), \text { for } s k-k<i \leq s k .
$$

Again, for $n+k<i+k \leq s k, n<i \leq s k-k$, Proposition 3 implies that

$$
\varphi((0, x, t+1, i+k))=\varphi((0, x, s, i+k))=\varphi((0, x, s, i)) .
$$

Hence, for any $n<i \leq n+t k, \varphi((0, x, t+1, i+k))=\varphi((0, x, t, i))$.
Often, an element $U=\left(a_{1}, a_{2}, \ldots, a_{p}, b_{1}, b_{2}, \ldots, b_{q}\right) \in A^{p+q}$ will be denoted by $U=V W$, where $V=\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ and $W=\left(b_{1}, b_{2}, \ldots, b_{q}\right)$, and to indicate that $W \in A^{i}$, we write $|W|=i$.

Definition 4. We will use the following notations.
(1) For each $1 \leq t \leq s-2$
$X_{t}=((x, t, 1),(x, t, 2), \ldots,(x, t, k)) \in D^{k} ;$
$Y_{t}=((x, t, n+k-t k+1),(x, t, n+k-t k+2), \ldots,(x, t, n+2 k-t k)) \in D^{k} ;$
$Z_{t}=((x, t, k+1),(x, t, k+2), \ldots,(x, t, k+n-t k)) \in D^{n-t k}$.
(2) For each $t=s-1$
$X_{s-1}=((x, s-1,1),(x, s-1,2), \ldots,(x, s-1, n-s k+2 k)) \in D^{n-s k+2 k}$;
$Y_{s-1}=((x, s-1, k+1),(x, s-1, k+2), \ldots,(x, s-1, n+2 \mathrm{k}-s k+k)) \in D^{n-s k+2 k}$.
(3) $X=((x, s-1, n-s k+2 k+1), \ldots,(x, s-1, k)) \in D^{s k-k-n}$.
$Y=((x, s, 1),(x, s, 2), \ldots,(x, s, n+2 k-s k)) \in D^{n+2 k-s k}$.
(4) $X_{S}=X_{1} X_{2} \ldots X_{s-2} X_{s-1}$ and $Y_{s}=Y_{s-1} Y_{s-2} \ldots Y_{2} Y_{1}$.
(5) For each $r \geq 0, S_{r}=X Y X Y \ldots X Y \in D^{r k}$ and $T_{r}=Y X Y X \ldots Y X \in D^{r k}$.
(6) For each $1 \leq t$,
$M_{t}=(\varphi((0, x, t, 1)), \varphi((0, x, t, 2)), \ldots . \varphi((0, x, t, n+t k))) \in D^{n+t k}$.
In Definition 4: X_{t}, Y_{t}, Z_{t} are well defined since for $1 \leq t \leq s-2$,
$(k+n-\mathrm{tk})-k=n-t k \geq n-(s-2) k=n+2 k-s k \geq 1$.
Similarly X_{s-1}, Y_{s-1} are well defined since $n-s k+2 k<k+1$.
For $n<(s-1) k, 0<s k-k-n$, and so $|X|>0$.
For $n=(s-1) k, 0=s k-k-n$, and so $|X|=0$, but then $\left|X_{s-1}\right|=\left|Y_{s-1}\right|=k$.
From Definition 4 it follows that $\left|X_{s}\right|=\left|Y_{s}\right|=n,\left|X_{s} X\right|=\left|X Y_{s}\right|=s k-k$, and $|X Y|=k$.

All the elements in the k-tuples $\mathrm{X}_{t}, Y_{t}, Z_{t}$ are distinct, and there are exactly $n+2 k-t k$ of them.

It follows directly from Definition 4, that each element of D, appears exactly once in exactly one of $X_{t}, Y_{t}, Z_{t}, X_{s-1}, Y_{s-1}, X, Y$.

With the above notations, $S_{r} X=Y T_{r}$ and $\left|S_{0}\right|=\left|T_{0}\right|=0$.

Proposition 5.

(a) For $1 \leq t \leq s-2, M_{t}=X_{1} X_{2} \ldots X_{t-1} X_{t} Z_{t} Y_{t} Y_{t-1} \ldots Y_{2} Y_{1}$.
(b) $M_{s-1}=X_{1} X_{2} \ldots X_{s-2} X_{s-1} X Y_{s-1} Y_{s-2} \ldots Y_{2} Y_{1}=X_{s} X Y_{s}$.
(c) $M_{s}=X_{1} X_{2} \ldots X_{s-2} X_{s-1} X Y X Y_{s-1} Y_{s-2} \ldots Y_{2} Y_{1}=X_{s} X Y X Y_{s}$.
(d) For $1 \leq r, M_{s+r}=X_{S} X Y X Y . . X Y X Y_{s}=X_{S} S_{r+1} X Y_{S}=X_{s} Y T_{r+1} X Y_{s}$.

Schematically, some of the M_{t} 's, for $s=4$, are shown bellow:

Proof. (a) and (b) follow directly from the definitions, while (d) follows from (c), the definitions and Proposition 4. For (c), the definitions and Proposition 3 imply that:

$$
\begin{aligned}
& (\varphi((0, x, s, n+1)), \varphi((0, x, s, n+2)), \ldots, \varphi((0, x, s, s k-k))) \\
& =((x, s-1, n-s k+2 k+1), \ldots,(x, s-1, s k-k-s k+2 k))=X .
\end{aligned}
$$

For $s k-k<i \leq n+k$, the definition of φ implies that:
$(\varphi((0, x, s, s k-k+1)), \varphi((0, x, s, s k-k+1)), \ldots, \varphi((0, x, s, n+k))=Y$.
In the above proposition, (b), (c) and (d) can be restated as:
for $0 \leq r, M_{S-1+r}=X_{S} S_{r} X Y_{S}=X_{S} X T_{r} Y_{S}$.

Proposition 6. Let $M_{t}=U L V, M_{q}=P L Q$, where $L \in D^{n}$ and $t \leq q$. We consider the following two cases: $t \leq s-2$ and $t \geq s-1$.
(a) $t \leq s-2$.

In this case, $q=t, P=U$, and $Q=V$.
(b) $t \geq s-1$.

In this case we have the following four possibilities.
(b.1) $M_{t}=U L L_{1} L^{\prime \prime} V$, such that $U L^{\prime}=X_{S}, L^{\prime \prime} V=Y_{S},\left|L^{\prime}\right|>0$ and $\left|L^{\prime \prime}\right|>0$. Then $q=t, P=U$, and $Q=V$. In this case, $t k<2 n$.
(b.2) $M_{t}=U L^{\prime} L_{1} V^{\prime} Y_{S}$, such that $U L^{\prime}=X_{s}, V=V^{\prime} Y_{s}$ and $\left|L^{\prime}\right|>0$. Then $P=U, Q=V^{\prime} T_{q-t} Y_{s}$ and $M_{q}=U L V^{\prime} T_{q-t} Y_{s}$.
(b.3) $M_{t}=X_{S} U^{\prime} L_{1} L^{\prime \prime} V$, such that $L^{\prime \prime} V=Y_{S}, U=X_{S} U^{\prime}$ and $\left|L^{\prime \prime}\right|>0$. Then $Q=V, P=X_{s} S_{q-t} U^{\prime}$ and $M_{q}=X_{s} S_{q-t} U^{\prime} L V$.
(b.4) $M_{t}=X_{s} U^{\prime} L V^{\prime} Y_{s}$, such that $U=X_{s} U^{\prime}, V=V^{\prime} Y_{s}$. Then $P=X_{s} P^{\prime}$, $Q=Q^{\prime} Y_{S}, U^{\prime}=S_{r} W_{1}, P^{\prime}=S_{p} W_{1}, V^{\prime}=W_{2} T_{i}, Q^{\prime}=W_{2} T_{j},\left|W_{1}\right|<k,\left|W_{2}\right|<k$, $M_{t}=X_{s} S_{r} W_{1} L W_{2} T_{i} Y_{s}$, and $M_{q}=X_{s} S_{q} W_{1} L W_{2} T_{j} Y_{s}$ for some p, q, i, j, W_{1} and W_{2}. In this case, $t k \geq 2 n$.

Proof. (a) $M_{t}=X_{1 . . .} X_{t} Z_{t} Y_{t \ldots . .} Y_{1}$ and $\left|X_{1} \ldots X_{t}\right|=\left|Y_{t \ldots . .} Y_{1}\right|=t k \leq(s-2) k<n$. This implies that L has a part of Z_{t}. Since the elements of Z_{t} appear only in M_{t} it follows that $q=t$. Since the first element of L appears only once in M_{t}, it follows that $|U|=|P|$. Hence $P=U$, and so $Q=V$.
(b) $M_{t}=X_{s} X T_{t+1-s} Y_{s}=U L V,\left|X T_{t+1-s}\right|=s k-k-n+(t+1-s) k=$ $t k-n \geq s k-k-n \geq 0$. In this case we have the following four subcases:
(b.1) L has parts of both X_{s}, Y_{S}, i.e. $L=L^{\prime} L_{1} L^{\prime \prime}, X T_{t+1-s}=L_{1},\left|L^{\prime}\right|>0,\left|L^{\prime \prime}\right|>0$;
(b.2) L has a part only of X_{s}, i.e. $L=L^{\prime} L_{1}, X T_{t+1-s}=L_{1} V^{\prime}, V=V^{\prime} Y_{s},\left|L^{\prime}\right|>0$;
(b.3) L has a part only of Y_{s}, i.e. $L=L_{1} L^{\prime \prime}, S_{t+1-s} X=U^{\prime} L_{1}, U=X_{s} U^{\prime},\left|L^{\prime \prime}\right|>0$;
(b.4) L has no parts of X_{S}, Y_{S}, i.e. $U=X_{S} U^{\prime}, V=V^{\prime} Y_{S},\left|U^{\prime}\right| \geq 0,\left|V^{\prime}\right| \geq 0$.
(b.1) In this case: $|L|=n>\left|X T_{t+1-s}\right|=t k-n$, i.e. $t k<2 n ; X_{s}=U L$; and $Y_{S}=L " V$. The first element of L^{\prime} is in X_{S}, the last element of $L^{\prime \prime}$ is in Y_{S} and they appear only once. Hence, $P=U, Q=V$, and $M_{q}=U L V=M_{t}$, i.e. $q=t$.
(b.2) In this case: $X_{s}=U L$ ' and $M_{t}=U L^{\prime} L_{1} V^{\prime} Y_{s}$. The first element of L^{\prime} is in X_{s} and appears only once. So, $P=U$ and $M_{q}=U L^{\prime} L_{1} Q=X_{s} L_{1} W Y_{S}$ where $Q=W Y_{s}$ and $L_{1} W=X T_{q+1-s}=X T_{t+1-s} T_{q-t}=L_{1} V^{\prime} T_{q-t}$. This implies that $W=V^{\prime} T_{q-t}$ and $Q=V^{\prime} T_{q-t} Y_{s}$.
(b.3) In this case: $Y_{S}=L " V$; and $M_{t}=X_{S} U^{\prime} L_{1} L " V$. The last element of $L^{\prime \prime}$ is in Y_{s} and appears only once. So $Q=V$ and $M_{q}=P L_{1} L{ }^{\prime \prime} V=X_{s} W L_{1} Y_{S}$ where $P=X_{s} W$ and $W L_{1}=S_{q+1-s} X=S_{q-t} S_{t+1-s} X=S_{q-t} U^{\prime} L_{1}$. This implies that $W=S_{q-t} U^{\prime}, P=X_{s} S_{q-t} U^{\prime}$ and $M_{q}=X_{s} S_{q-t} U^{\prime} L V$.
(b.4) In this case: $S_{t+1-s} X=X T_{t+1-s}=U^{\prime} L V^{\prime}$. Since L has no parts of X_{S} and Y_{s}, it follows that $S_{q+1-s} X=X T_{q+1-s}=P^{\prime} L Q^{\prime}, P=X_{S} P^{\prime}, Q=Q^{\prime} Y_{s}$ and $M_{q}=X_{S} P^{\prime} L Q^{\prime} Y_{s}$. Let: $U^{\prime}=S_{r} U^{\prime \prime}$ and $P^{\prime}=S_{p} P^{\prime \prime}$ where $\left|P^{\prime \prime}\right|<k$ and $\left|U^{\prime \prime}\right|<k$. Then, $S_{t+1-s} X=U^{\prime} L V^{\prime}=S_{r} U^{\prime \prime} L V^{\prime}, S_{q+1-s} X=P^{\prime} L Q^{\prime}=S_{p} P^{\prime \prime} L Q^{\prime}$ and $X Y=U^{\prime \prime} L^{\prime}=P^{\prime \prime} L^{\prime \prime}$ where $L=L^{\prime} L_{1}=L^{\prime \prime} L_{2}$. Since the first element of L appears exactly once in $X Y$, it follows that $U_{1}=P_{1}=W_{1}, L^{\prime}=L^{\prime \prime}, U^{\prime}=S_{r} W_{1}$ and $P=S_{p} W_{1}$. Hence, $M_{t}=X_{s} S_{r} W_{l} L V^{\prime} Y_{s}$ and $M_{q}=X_{s} S_{q} W_{l} L Q^{\prime \prime} Y_{s}$. Next, let: $V^{\prime}=V^{\prime \prime} T_{i}$ and $Q^{\prime}=Q^{\prime \prime} T_{j}$ where $\left|Q^{\prime \prime}\right|<k$ and $\left|V^{\prime \prime}\right|<k$. Then, $X T_{t+1-s}=S_{r} W_{l} L V^{\prime \prime} T_{i}$, $X T_{q+1-s}=S_{p} W_{1} L Q^{\prime \prime} T_{j}$ and $Y X=N^{\prime} V^{\prime \prime}=N^{\prime \prime} Q^{\prime \prime}$ where $L=N_{1} N^{\prime}=N_{2}$. Since the last element of L appears exactly once in $Y X$, it follows that $V^{\prime \prime}=Q^{\prime \prime}=W_{2}$, $N^{\prime}=N^{\prime}, V^{\prime}=W_{2} T_{i}$ and $Q^{\prime}=W_{2} T_{j} . \quad$ Hence, $M_{t}=X_{S} S_{r} W_{1} L W_{2} T_{i} Y_{S}$ and $M_{q}=X_{s} S_{p} W_{1} L W_{2} T_{j} Y_{s}$.

In this case, $|L|=n \leq t k+k-s k+|X|=t k+k-s k+s k-k-n=t k-n$, i.e. $2 n \leq t k$.

Definition 5. Let:

$$
\begin{aligned}
& D_{1}=D_{1}(x)=\{(\varphi((0, x, t, i+1)), \ldots, \varphi((0, x, t, i+n))) \mid t \geq 1,0 \leq i<t k-n\} \subseteq D^{n} \\
& D_{2}=\{(\varphi((0, x, t, i+1)), \ldots, \varphi((0, x, t, i+n+k))) \mid t \geq 1,0 \leq i<t k-n+k\} \subseteq D^{n+k}
\end{aligned}
$$

We define a map $f:\{x\} \cup D_{1} \rightarrow D_{2}$ by:

$$
\begin{aligned}
& f(x)=((x, 1,1), \ldots,(x, 1, n+k)), \text { and } \\
& f((\varphi((0, x, t, i+1)), \ldots, \varphi((0, x, t, i+n)))) \\
& =(\varphi((0, x, t+1, i+1)), \ldots, \varphi((0, x, t+1, i+n+k))) .
\end{aligned}
$$

Proposition 7. The map f is well defined.
Proof. Let $L=(\varphi((0, x, t, i+1)), \ldots, \varphi((0, x, t, i+n)))$

$$
=(\varphi((0, x, q, j+1)), \ldots, \varphi((0, x, q, j+n)))
$$

and let $t \leq q$. We have to show that $N=M$ where:

$$
\begin{aligned}
& N=(\varphi((0, x, t+1, i+1)), \ldots, \varphi((0, x, t+1, i+n+k))), \\
& M=(\varphi((0, x, q+1, j+1)), \ldots, \varphi((0, x, q+1, j+n+k))) .
\end{aligned}
$$

Let $M_{t}=U L V, M_{q}=P L Q$. Then $M_{t+1}=U_{1} N V_{1}, M_{q+1}=P_{1} M Q_{1}$, such that $|U|=\left|U_{1}\right|,|V|=\left|V_{1}\right|,|P|=\left|P_{1}\right|,|Q|=\left|Q_{1}\right|$. According to the Proposition 6,
we have to consider only the three cases: (b.2), (b.3) and (b.4), and only for $t \geq s-1$.
(b.2) $M_{t}=U L^{\prime} L_{1} V^{\prime} Y_{s}, M_{q}=U L^{\prime} L_{1} V^{\prime} T_{q-t} Y_{s}, U L^{\prime}=X_{s}$ and $L=L^{\prime} L_{1}$. Then, by the definitions, $M_{t+1}=U L V^{\prime} Y X Y_{s}$, and $M_{q}=U L V^{\prime} T_{q-t} Y X Y_{s}=$ $U L V^{\prime} Y X T_{q-t} Y_{S}$. This and the definitions imply that $L V^{\prime} Y X=N R=M R^{\prime}$ for some R and R^{\prime}. Since $|N|=|M|$ it follows that $N=M$.
(b.3) $M_{t}=X_{s} U^{\prime} L_{2} L^{\prime \prime} V, \quad M_{q}=X_{s} S_{q-t} U^{\prime} L_{2} L^{\prime \prime} V, \quad L^{\prime \prime} V=Y_{s}$ and $L=L_{2} L^{\prime \prime}$. Then, by the definitions, $M_{t+1}=X_{s} U^{\prime} L_{2} Y X L{ }^{\prime \prime} V=X_{s} U^{\prime} N V$, and $M_{q}=X_{s} S_{q-t} U^{\prime} L_{2} Y X L " V=X_{s} S_{q-t} U^{\prime} M V$. This implies that $n=L_{2} Y X L "=M$.
(b.4) $M_{t}=X_{s} S_{r} W_{1} L W_{2} T_{i} Y_{s}$ and $M_{q}=X_{s} S_{q} W_{1} L W_{2} T_{j} Y_{s}$. Then:
$M_{t+1}=X_{s} S_{r} W_{1} L W_{2} T_{i} Y X Y_{s}=X_{s} S_{r} W_{1} L W_{2} Y X T_{i} Y_{s}=X_{s} S_{r} W_{1} N V_{1}$ and
$M_{q+1}=X_{s} S_{q} W_{1} L W_{2} T_{j} Y X Y_{s}=X_{s} S_{q} W_{1} L W_{2} Y X T_{j} Y_{s}=X_{s} S_{q} W_{1} M Q_{1}$.
This and the definitions imply that $L W_{2} Y X=N R=M R^{\prime}$ for some R and R^{\prime}. Since $|N|=|M|$ it follows that $N=M$.

It follows directly from Definition 5 that for any $M \in D_{2}, M=f(N)$ for some $N \in D_{1}$ and if $M=U L V$ where $L \in D^{n}$ then $L \in D_{1} \subseteq D^{n}$.

Proposition 8. For any $0 \leq p, q \leq k,\left(1^{p} \times f \times 1^{k-p}\right) \circ f=\left(1^{q} \times f \times 1^{k-q}\right) \circ f$.
Proof. Let $L \in D_{1}$, and $f(L)=U N V \in D_{2}$, for $U \in D^{p}, N \in D_{1}, V \in D^{k-p}$. Then, $\left(1^{p} \times f \times 1^{k-p}\right) \circ f(L)=\left(1^{p} \times f \times 1^{k-p}\right)(U N V)=U f(N) V$.

Let
$U=(\varphi((0, x, t, r-p+1)), \ldots, \varphi((0, x, t, r)))$,
$N=(\varphi((0, x, t, r+1)), \ldots, \varphi((0, x, t, r+n)))$,
$V=(\varphi((0, x, t, r+n+1)), \ldots, \varphi((0, x, t, r-p+n+k)))$,
$f(N)=(\varphi((0, x, t+1, r+1)), \ldots, \varphi((0, x, t+1, r+n+k)))$,
$U_{1}=(\varphi((0, x, t+1, r-p+1)), \ldots, \varphi((0, x, t+1, r)))$, and
$V_{1}=(\varphi((0, x, t+1, r+n+k+1)), \ldots, \varphi((0, x, t+1, r-p+n+2 k)))$.
Then $U_{1} f(N) V_{1}=(\varphi((0, x, t+1, r-p+1)), \ldots, \varphi((0, x, t+1, r-p+n+2 k)))$.
Since $r-p+n+k \leq n+t k$, it follows that $r \leq t k-k+p \leq t k$. This, and Proposition 7, imply that $U=U_{1}$.

Since $0 \leq r$, it follows that $n<r+n+1$. This, and Proposition 7, imply that $V=V_{1}$.

Hence, $U f(N) V=U_{1} f(N) V_{1}$ and since $U_{1} f(N) V_{1}$ does not depend on N it follows that $\left(1^{p} \times f \times 1^{k-p}\right) \circ f(L)=\left(1^{q} \times f \times 1^{k-q}\right) \circ f(L)$ for any $L \in D_{1}$, i.e. that $\left(1^{p} \times f \times 1^{k-p}\right) \circ f=\left(1^{q} \times f \times 1^{k-q}\right) \circ f$.

Proposition 9. Let $L=(\varphi((0, x, t, i+1)), \ldots, \varphi((0, x, t, i+n)))$ and let $f(L)=(\varphi((0, x, t, i+1)), \ldots, \varphi((0, x, t, i+n+)))=U N V=P M Q$, where $N, M \in D^{n}$. Then $U f(N) V=P f(M) Q$.

Proof. It follows from Proposition 8.

3. CONSTRUCTION 2

Let C be a given nonempty set, $C_{1} \subseteq C^{n}$ and $\rho: C_{1} \rightarrow C^{n+k}$ be such that:
(1) If $\rho(L)=U N V$ and $|N|=n$, then $N \in C_{1}$;
(2) If $\rho(L)=U N V=P W Q$ and $|N|=|W|=n$ then $U \rho(N) V=P \rho(W) Q$.

This condition is equivalent to the following: for any $0 \leq p, q \leq k$,

$$
\left(1^{p} \times \rho \times 1^{k-p}\right) \circ \rho=\left(1^{q} \times \rho \times 1^{k-q}\right) \circ \rho, \text { where } 1^{p} \times \rho \times 1^{k-p}: \rho\left(C_{1}\right) \rightarrow C^{n+2 k}
$$

For each $x \in C^{n} \mid C_{1}$, let $D(x), E(x), D_{1}(x), \varphi$ and f be defined as in the CONSTRUCTION 1.

Definition 6. Let H be the union of C and of all the $D(x), x \in C^{n} \mid C_{1}$. Let $H_{1} \subseteq H^{n}$ be the union of C^{n} and all the $D_{1}(x), x \in C^{n} \mid C_{1}$, and let h: $H_{1} \rightarrow H^{n+k}$ be defined by:

If $x \in C_{1}, h(x)=\rho(x)$;
If $x \in C^{n} \backslash C_{1}, h(x)=f(x)=((x, 1,1), \ldots,(x, 1, n+k))$;

Proposition 10.

(1) If $h(L)=U N V$ and $|N|=n$, then $N \in H_{1}$;
(2) If $h(L)=U N V=P W Q$ and $|N|=|W|=n$, then $U h(N) V=P h(W) Q$.

This condition is equivalent to the following: for any $0 \leq p, q \leq k$,

$$
\left(1^{p} \times h \times 1^{k-p}\right) \circ h=\left(1^{q} \times h \times 1^{k-q}\right) \circ h, \text { where } 1^{p} \times h \times 1^{k-p}: h\left(H_{1}\right) \rightarrow H^{n+2 k}
$$

Proof. Follows from the Definition 6 and CONSTRUCTION 1.

4. CONSTRUCTION OF FREE $(n, n+k)$-SEMIGROUPS

Let A be a nonempty set. Simply by replacing A with $A \times\{0\}$, we assume that all the new elements introduced in the construction are distinct, and are not elements of A.

Step 0. Let $A_{0}=A, B_{0}=\varnothing \subseteq\left(A_{0}\right)^{n}$, and $f_{0}: B_{0} \rightarrow\left(A_{0}\right)^{n+k}$ be the empty map. Then the map f_{0} satisfies the conditions (1) and (2) from CONSTRUCTION 2.

Step 1. We apply CONSTRUCTION 2 for $C=A_{0}, C_{1}=B_{0}$, and $\rho=f_{0}$, to obtain, H, H_{1} and h. Define $A_{1}=H, B_{1}=H_{1}$ and $f_{1}=h: B_{1} \rightarrow\left(A_{1}\right)^{n+k}$. Then, f_{1} satisfies (1) and (2) from CONSTRUCTION 2, and moreover, $A_{0} \subseteq A_{1}$, $B_{0} \subseteq\left(A_{0}\right)^{n} \subseteq B_{1} \subseteq\left(A_{1}\right)^{n}$ and the restriction of f_{1} on B_{0} is equal to f_{0}.

Next, we continue by induction. Assume that we have reached

Step m. With this step we have constructed the sets $A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq \ldots$ $\subseteq A_{m-1} \subseteq A_{m}$, and $B_{0} \subseteq\left(A_{0}\right)^{n} \subseteq B_{1} \subseteq\left(A_{1}\right)^{n} \subseteq \ldots \subseteq B_{m-1} \subseteq\left(A_{m-1}\right)^{n} \subseteq B_{m} \subseteq\left(A_{m}\right)^{n}$ and the maps $f_{j}: B_{j} \rightarrow\left(A_{j}\right)^{n+k}$, for $0 \leq j \leq m$ such that the maps f_{j} satisfy the conditions (1) and (2) from CONSTRUCTION 2, and the restriction of f_{j} on B_{r} is equal to f_{r} for every $0 \leq r<j \leq m$.

Step m+1. We apply CONSTRUCTION 2 for $C=A_{m}, C_{1}=B_{m}$, and $\rho=f_{m}$, to obtain, H, H_{1} and h. Define $A_{m+1}=H, B_{m+1}=H_{1}$ and $f_{m+1}=h$. Then, $f_{m+1}: B_{m+1} \rightarrow\left(A_{m+1}\right)^{n+k}$, satisfies the conditions (1) and (2) from CONSTRUCTION 2, and moreover, $A_{m} \subseteq A_{m+1}, B_{m} \subseteq\left(A_{m}\right)^{n} \subseteq B_{m+1} \subseteq\left(A_{m+1}\right)^{n}$ and the restriction of f_{m+1} on B_{m} is equal to f_{m}.

With this procedure, we have constructed sets A_{j}, B_{j} and maps $f_{j}: B_{j} \rightarrow\left(A_{j}\right)^{n+k}$ for $0 \leq j$, such that $A_{j} \subseteq A_{j+1}, B_{j} \subseteq\left(A_{j}\right)^{n} \subseteq B_{j+1}$, the restriction of f_{j+1} on B_{j} is equal to f_{j} and the maps f_{j} satisfy the conditions (1) and (2) from CONSTRUCTION 2.

Definition 7. Let $F(A)=\bigcup_{0 \leq j} A_{j}, B=\bigcup_{0 \leq j} B_{j}, O=\bigcup_{0 \leq j}\left(A_{j}\right)^{n+k}$ and let f be the union map of all the maps f_{j}.

Proposition 11. (a) $B=(F(A))^{n}$;
(b) $O \subseteq(F(A))^{n+k}$; and
(c) $(F(A), f)$ is a free $(n, n+k)$-semigroup with basis A.

Proof. (a) Since for each $0 \leq j, B_{j} \subseteq\left(A_{j}\right)^{n}$, it follows that $B \subseteq F(A)^{n}$, and since for each $0 \leq j, A_{j} \subseteq A_{j+1}$ and $\left(A_{j}\right)^{n} \subseteq B_{j+1}$, it follows that $F(A)^{n} \subseteq B$.
(b) Since for each $0 \leq j, A_{j} \subseteq F(A)$ it follows that $O \subseteq F(A)^{n+k}$.
(c) From (a), (b), the definition of f and Proposition 10, it follows that $(F(A), f)$ is an $(n, n+k)$-semigroup.

Let (G, g) be an $(n, n+k)$-semigroup, and let $g^{t}: G^{n} \rightarrow G^{n+t k}$ be the maps as constructed in Propositions 1 and 2. Let $\eta: A \rightarrow G$ be a map. We will extend η to an $(n, n+k)$-homomorphism $\psi: F(A) \rightarrow G$ in a unique way as follows:

Step 0. Let $\psi_{0}=\eta: A_{0} \rightarrow G$.
Step 1. Let $z \in A_{1}=H \equiv$ the union of A_{0} and all the $D(x), x \in\left(A_{0}\right)^{n} \backslash B_{0}$. If $z \in A_{0}$, we define $\psi_{1}(z)=\psi_{0}(z)$. If $z \notin A_{0}$, then $z \in D(x)$ for some $x \in\left(A_{0}\right)^{n} \backslash B_{0}$, i.e. $z=(x, j, i)$, for some $x \in\left(A_{0}\right)^{n} \backslash B_{0}, \quad 1 \leq j \leq s, 1 \leq i \leq n+s k-j k$. Since $x \in\left(A_{0}\right)^{n}$, $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where all the $x_{t} \in A_{0}$. Let $y=\left(\psi_{0}\left(x_{1}\right), \psi_{0}\left(x_{2}\right), \ldots, \psi_{0}\left(x_{n}\right)\right)$ and let $g^{j}(y)=\left(w_{1}, w_{2}, \ldots, w_{n+j k}\right) \in G^{n+j k}$. In this case we define $\psi_{1}(z)=w_{j k-k+i}$. This, together with the definition of φ implies that for any $t, \psi_{1}(\varphi(0, x, j, t))=w_{t}$.

We claim that for any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in B_{1}$,

$$
g\left(\left(\psi_{1}\left(x_{1}\right), \psi_{1}\left(x_{2}\right), \ldots, \psi_{1}\left(x_{n}\right)\right)=\left(\psi_{1}\left(a_{1}\right), \psi_{1}\left(a_{2}\right), \ldots, \psi_{1}\left(a_{n}+k\right)\right)\right.
$$

where $\left(a_{1}, a_{2}, \ldots, a_{n+k}\right)=f_{1}(x)$.
Proof of the claim. If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(A_{0}\right)^{n}$, then $\psi_{1}\left(x_{t}\right)=\psi_{0}\left(x_{t}\right)$ and by definition $a_{i}=(x, 1, i), 1 \leq i \leq n+k$, and $\psi_{1}\left(a_{i}\right)=w_{i}$, where

$$
\left(w_{1}, w_{2}, \ldots, w_{n+k}\right)=g^{1}(y)=g\left(\left(h_{0}\left(x_{1}\right), h_{0}\left(x_{2}\right), \ldots, h_{0}\left(x_{n}\right)\right)\right)
$$

If $x \notin\left(A_{0}\right)^{n}$, then $x \in D_{1}(u)$ for some $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in\left(A_{0}\right)^{n} \backslash B_{0}$, i.e. $x=(\varphi((0, u, j, i+1)), \ldots, \varphi((0, u, j, i+n)))$ for some $j \geq 1,0 \leq i<t k-n$.
Then, $\left(\psi_{1}\left(x_{1}\right), \psi_{1}\left(x_{2}\right), \ldots, \psi_{1}\left(x_{n}\right)\right)=\left(w_{j k-k+i+1}, w_{\left.j k-k+i+2, \ldots, w_{j k-k+n}\right) \text {, where }}\right.$ $\left(w_{1}, w_{2}, \ldots, w_{n+j k}\right)=g^{j}\left(\left(\psi_{0}\left(u_{1}\right), \psi_{0}\left(u_{2}\right), \ldots, \psi_{0}\left(u_{n}\right)\right)\right.$.

So, $g\left(\left(\psi_{1}\left(x_{1}\right), \psi_{1}\left(x_{2}\right), \ldots, \psi_{1}\left(x_{n}\right)\right)=\left(v_{j k-k+i+1}, v_{j k-k+i+2, \ldots,}, v_{j k-k+n+k}\right)\right.$, where

$$
\left(v_{1}, v_{2}, \ldots, v_{n+j k+k}\right)=g^{j+1}\left(\left(\psi_{0}\left(u_{1}\right), \psi_{0}\left(u_{2}\right), \ldots, \psi_{0}\left(u_{n}\right)\right) .\right.
$$

Again by the definitions, $f_{1}(x)=(\varphi((0, u, j+1, i+1)), \ldots, \varphi((0, u, j, i+n+k)))$ and $\psi_{1}(\varphi(0, u, j+1, t))=v_{t}=\psi_{1}\left(a_{t}\right)$ for $a_{t}=\varphi((0, u, j+1, i+\mathrm{t}))$. Hence:

$$
g\left(\left(\psi_{1}\left(x_{1}\right), \psi_{1}\left(x_{2}\right), \ldots, \psi_{1}\left(x_{n}\right)\right)=\left(\psi_{1}\left(a_{1}\right), \psi_{1}\left(a_{2}\right), \ldots, \psi_{1}\left(a_{n}+k\right)\right)\right.
$$

where $\left(a_{1}, a_{2}, \ldots, a_{n+k}\right)=f_{1}(x)$.
This implies the claim.
Next we continue by induction. Assume that we have reached Step m.

Step m. With this step we have defined a map $\psi_{m}: A_{m} \rightarrow G$, such that its restriction to any A_{j} is equal to ψ_{j} and such that for any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in B_{m}$,

$$
g\left(\left(\psi_{m}\left(x_{1}\right), \psi_{m}\left(x_{2}\right), \ldots, \psi_{m}\left(x_{n}\right)\right)=\left(\psi_{m}\left(a_{1}\right), \psi_{m}\left(a_{2}\right), \ldots, \psi_{m}\left(a_{n+k}\right)\right)\right.
$$

where $\left(a_{1}, a_{2}, \ldots, a_{n+k}\right)=f_{m}(x)$.

Step $\mathbf{m + 1}$. Let $z \in A_{m+1}=H \equiv A_{m}$ union all the $D(x), x \in\left(A_{m}\right)^{n} \backslash B_{m}$. If $z \in A_{m}$, we define $\psi_{m+1}(z)=\psi_{m}(z)$. If $z \notin A_{m}$, then $z \in D(x)$ for some $x \in\left(A_{m}\right)^{n} \backslash B_{m}$, i.e. $z=(x, j, i)$, for some $x \in\left(A_{m}\right)^{n} \backslash B_{m}, 1 \leq j \leq s, 1 \leq i \leq n+s k-j k$. Since $x \in\left(A_{m}\right)^{n}, x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where all the $x_{t} \in A_{m}$. Let $y=\left(\psi_{m}\left(x_{1}\right), \psi_{m}\left(x_{2}\right), \ldots, \psi_{m}\left(x_{n}\right)\right)$ and $g^{j}(y)=\left(w_{1}, w_{2}, \ldots, w_{n+j k}\right) \in G^{n+t k}$. We define $\psi_{m+1}(z)=w_{j k-k+i}$.

By the definition, the restriction of ψ_{m+1} to A_{m} is equal to ψ_{m}.
We claim that for any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in B_{m+1}$,
$\mathrm{g}\left(\left(\psi_{m+1}\left(x_{1}\right), \psi_{m+1}\left(x_{2}\right), \ldots, \psi_{m+1}\left(x_{n}\right)\right)=\left(\psi_{m+1}\left(a_{1}\right), \psi_{m+1}\left(a_{2}\right), \ldots, \psi_{m+1}\left(a_{n+k}\right)\right)\right.$ where $\left(a_{1}, a_{2}, \ldots, a_{n+k}\right)=f_{m+1}(x)$.

Proof of the claim. If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in B_{m} \subseteq\left(A_{m}\right)^{n}$, then by induction and Step m: $\psi_{m+1}\left(x_{t}\right)=\psi_{m}\left(x_{t}\right), f_{m+1}(x)=f_{m}(x)=\left(a_{1}, a_{2}, \ldots, a_{n+k}\right)$, and $\mathrm{g}\left(\left(\psi_{m+1}\left(x_{1}\right), \psi_{m+1}\left(x_{2}\right), \ldots, \psi_{m+1}\left(x_{n}\right)\right)=g\left(\left(\psi_{m}\left(x_{1}\right), \psi_{m}\left(x_{2}\right), \ldots, \psi_{m}\left(x_{n}\right)\right)\right.\right.$ $=\left(\psi_{m}\left(a_{1}\right), \psi_{m}\left(a_{2}\right), \ldots, \psi_{m}\left(a_{n+k}\right)\right)=\left(\psi_{m+1}\left(a_{1}\right), \psi_{m+1}\left(a_{2}\right), \ldots, \psi_{m+1}\left(a_{n+k}\right)\right)$. All this implies the claim in this case.

If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(A_{m}\right)^{n} \backslash B_{m}$, then $\psi_{m+1}\left(x_{t}\right)=\psi_{m}\left(x_{t}\right)$ and by definition $a_{i}=(x, 1, i), 1 \leq i \leq n+k$, and $\psi_{m+1}\left(a_{i}\right)=w_{i}$, where

$$
\left(w_{1}, w_{2}, \ldots, w_{n+k}\right)=g^{1}(y)=g\left(\left(\psi_{m}\left(x_{1}\right), \psi_{m}\left(x_{2}\right), \ldots, \psi_{m}\left(x_{n}\right)\right)\right)
$$

All this implies the claim in this case.
If $x \notin\left(A_{m}\right)^{n}$, then $x \in D_{1}(u)$ for some $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in\left(A_{m}\right)^{n} \backslash B_{m}$, i.e. $x=(\varphi((0, u, j, i+1)), \ldots, \varphi((0, u, j, i+n)))$ for some $j \geq 1,0 \leq i<t k-n$. Then, $\left(\psi_{m+1}\left(x_{1}\right), \psi_{m+1}\left(x_{2}\right), \ldots, \psi_{m+1}\left(x_{n}\right)\right)=\left(w_{j k-k+i+1}, w_{j k-k+i+2}, \ldots, w_{j k-k+n}\right)$, where $\left(w_{1}, w_{2}, \ldots, w_{n+j k}\right)=g^{j}\left(\left(\psi_{m}\left(u_{1}\right), \psi_{m}\left(u_{2}\right), \ldots, \psi_{m}\left(u_{n}\right)\right)\right.$. So, $\mathrm{g}\left(\left(\psi_{m+1}\left(x_{1}\right), \psi_{m+1}\left(x_{2}\right), \ldots, \psi_{m+1}\left(x_{n}\right)\right)=\left(v_{j k-k+i+1}, v_{\left.j k-k+i+2, \ldots, v_{j k-k+n+k}\right), ~}^{\text {j }}\right.\right.$, where $\left(v_{1}, v_{2}, \ldots, v_{n+j k+k}\right)=g^{j+1}\left(\left(\psi_{m}\left(u_{1}\right), \psi_{m}\left(u_{2}\right), \ldots, \psi_{m}\left(u_{n}\right)\right)\right.$. By the definitions, $f_{m+1}(x)=(\varphi((0, u, j+1, i+1)), \ldots, \varphi((0, u, j, i+n+k)))$ and $\psi_{m+1}(\varphi(0, u, j+1, t))=v_{t}=\psi_{m}\left(a_{t}\right)$ for $a_{t}=\varphi((0, u, j+1, i+\mathrm{t}))$. Hence: $g\left(\left(\psi_{m+1}\left(x_{1}\right), \psi_{m+1}\left(x_{2}\right), \ldots, \psi_{m+1}\left(x_{n}\right)\right)=\left(\psi_{m+1}\left(a_{1}\right), \psi_{m+1}\left(a_{2}\right), \ldots, \psi_{m+1}\left(a_{n+k}\right)\right)\right.$ where $\left(a_{1}, a_{2}, \ldots, a_{n+k}\right)=f_{1}(x)$.

This implies the claim.
This completes the induction. We define the map ψ to be the union of all the maps ψ_{m}. From its definition it follows that ψ is an ($n, n+k$)-homomorphism and it is unique with these properties.

All this shows that $(F(A), f)$ is a free $(n, n+k)$-semigroup with basis A.

Example 4. Let $n=1, k=2$.Then $s=2$, since

$$
(s-2) k=(2-2) 2<1=n \leq(2-1) 2=(s-1) k<1+2=n+k \leq 4=s k .
$$

Let $A=\{a\}$. Then $D=D(x)=\{(a, 1,1),(a, 1,2),(a, 1,3),(a, 2,1)\}$ and $D_{1}=D=D^{n}$. So $F(A)=\{a, b, c, d, e\}$, where $b=(a, 1,1), c=(a, 1,2)$, $d=(a, 1,3), e=(a, 2,1)$, and $f: F(A) \rightarrow\left(F(A)^{3}\right.$ is defined by:
$f(a)=(b, c, d), f(b)=(b, c, e), f(c)=(c, e, c), f(d)=(e, c, d), f(e)=(e, c, e)$.

Резиме

СЛОБОДНИ (n, n + k)-ПОЛУГРУПИ

Во овој труд воведен е поимот за ($n, n+k$)-полугрупи, докажани се некои својства за нив и е даден алгоритамски опис на слободни ($n, n+k$)-полугрупи со дадена база.

Клучни зборови: $(n, n+k)$-полугрупи; слободни $(n, n+k)$-полугрупи

Address:

Dončo Dimovski

Institute of Mathematics, Faculty of Science,
Ss. Cyril and Methodius University in Skopje,
P.O. Box 162, MK - 1001 Skopje, Republic of Macedonia
donco@pmf.ukim.mk

Received: 1. XII 2009
Accepted: 28. XII 2009

