(4,2)-CHAIN HOMOTOPY

Ajet Ahmeti ${ }^{1}$, Dončo Dimovski ${ }^{2}$
${ }^{1}$ University of Prishtina, Prishtina, Kosovo
${ }^{2}$ Institute of Mathematics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
*Corresponding author, e-mail: donco@pmf.ukim.mk

We consider (4,2)-chain homotopy for (4,2)-chain maps between (4,2)-chain complexes (weak or strong), and prove that if f and g are (4,2)-chain homotopic, then they induce the same homomorphisms on the (4,2)-homology groups for the correspondent $(4,2)$-chain complexes.

Key words: commutative (4,2)-group; weak (4,2)-chain complex; strong (4,2)-chain complex; (4,2)-chain map; (4,2)-chain homotopy

INTRODUCTION

The notions of $(4,2)$-chain complexes and (4,2)-chain homology groups were introduced and examined in [5]. In this paper we consider a notion of a (4,2)-chain homotopy, analogouos to the usual notion of a chain homotopy for chain complexes. Although the introduced notion of a (4,2)-chain homotopy, in general, does not behave in the same way as the usual chain homotopy (for example, the relation among (4,2)-chain maps defined by $(4,2)$ chain homotopies is not an equivalence), it produces the same results on the $(4,2)$-homology groups.

For the usual notions about chain complexes of Abelian groups, chain homotopy and homology groups we refer to [4]. We recall the basic notions and properties about $(4,2)$-groups and $(4,2)$-chain complexes from [1], [2], [3] and [5].
$\mathbf{1}^{\mathbf{0}} \mathrm{A}(4,2)$-semigroup is a pair $(\mathrm{G},[])$, where G is a nonempty set and []: $\mathrm{G}^{4} \rightarrow \mathrm{G}^{2}$ is a (4,2)operation, such that for any $x, y, z, t, u, v \in G$,
[[xyzt]uv] $=[x[y z t u] v]=[x y[z t u v]]$,
i.e. [] is (4,2)-associative.

Since the (4,2)-operation is associative, we use the notation [xyztuv] for [[xyzt]uv].

For (4,2)-semigroups (G,[]), (G',[]'), a $(4,2)$-homomorphism is a map $f: G \rightarrow G^{\prime}$ such that
$[f(x) f(y) f(z) f(t)]=(f(u), f(v))$, where $(u, v)=[x y z t]$ for any $x, y, z, t \in G$.

Any (4,2)-semigroup (G,[]) induces a semigroup $\left(\mathrm{G}^{2}, \circ\right)$, where " \circ " is the binary operation on G^{2} defined by:

$$
(\mathrm{x}, \mathrm{y}) \circ(\mathrm{u}, \mathrm{v})=[\mathrm{xyuv}],
$$

for any $(\mathrm{x}, \mathrm{y}),(\mathrm{u}, \mathrm{v}) \in \mathrm{G}^{2}$.
We say that a (4,2)-semigroup (G,[]) is a commutative $(4,2)$-group if $\left(\mathrm{G}^{2}, \circ\right)$ is a commutative group
$\mathbf{2}^{\mathbf{0}}$ Let $(\mathrm{G},[\mathrm{]})$, be a commutative $(4,2)$-group. Then there is $0 \in \mathrm{G}$ and for each $\mathrm{x} \in \mathrm{G}$, there is a unique element $-\mathrm{x} \in \mathrm{G}$, such that for any $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t} \in \mathrm{G}$:
(a) $[\mathrm{xyzt}]=[\mathrm{zyxt}]=[\mathrm{xtzy}]=[\mathrm{ztxy}]$;
(b) if $[\mathrm{xyzt}]=(\mathrm{u}, \mathrm{v})$, then $[\mathrm{yxzt}]=(\mathrm{v}, \mathrm{u})$;
(c) $[00 \mathrm{xy}]=(\mathrm{x}, \mathrm{y})$ and $[\mathrm{xx}(-\mathrm{x})(-\mathrm{x})]=(0,0)$;
(d) if $[x x y y]=(u, v)$, then $u=v$;
(e) if $[x(-x) y(-y)]=(u, v)$, then $v=-u$;
(f) the neutral element in $\left(\mathrm{G}^{2}, \circ\right)$ is $(0,0)$; and
(g) the inverse element for $(x, y) \in\left(\mathrm{G}^{2}, \circ\right)$ is the element $(x, y)^{-1}=[y x(-x)(-x)(-y)(-y)]$.
$3^{\mathbf{0}} \mathrm{A}$ subset H of G , for a given commutative $(4,2)$-group $(G,[])$, is a $(4,2)$-subgroup, if $u, v \in H$, for any $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t} \in \mathrm{H}$ with $[\mathrm{xyzt}]=(\mathrm{u}, \mathrm{v})$.

For a (4,2)-subgroup ($\mathrm{H},[\mathrm{]}$) of a commutative $(4,2)$-group (G,[]), in general, there is no way of defining a $(4,2)$-factor group, but for normal (4,2)-subgoups (4,2)-factor groups are defined.
$\mathbf{4}^{\mathbf{0}}$ A (4,2)-subgroup (H,[]) a of a commutative $(4,2)$-group $(\mathrm{G},[\mathrm{]})$ is said to be normal, if
$\left[\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{H}^{2}\right]=\left[\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{H}^{2}\right] \Leftrightarrow\left[\mathrm{x}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}} \mathrm{H}^{2}\right]=\left[\mathrm{y}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}} \mathrm{H}^{2}\right]$,
for any $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2} \in \mathrm{G}$, and $\mathrm{j}=1,2$, where

$$
\left[\mathrm{xyH}^{2}\right]=\{[\text { xyuv }] \mid \mathrm{u}, \mathrm{v} \in \mathrm{H}\} .
$$

If ($\mathrm{H},[\mathrm{]}$) is a normal (4,2)-subgroup of a commutative (4,2)-group (G,[]), the (4,2)-factor group $(G / H,[])$ is defined by: $G / H=\left\{x^{\sim} \mid x \in G\right\}$, where \sim is the equivalence relation on G defined by
$x \sim y \Leftrightarrow\left[x_{x H}{ }^{2}\right]=\left[y y H^{2}\right]$ i.e. $x-y \in H$, and $\left[x^{\sim} y^{\sim} z^{\sim} t^{\sim}\right]=\left(u^{\sim}, v^{\sim}\right)$ for $[x y z t]=(u, v)$.
5° The commutative (4,2)-groups and (4,2)homomorphisms, form the category $(4,2)-A b$.

Three functors, denoted by Φ_{2}, Φ_{+}and Φ_{*} from the category (4,2)-Ab to the category $A b$ of commutative groups are defined as follows.

For a commutative $(4,2)$-group $\underline{G}=(\mathrm{G},[\mathrm{]})$:
(1) $\Phi_{2}(\underline{G})$ is the group $\left(\mathrm{G}^{2}, \circ\right)$, defined in $\mathbf{1}^{\mathbf{0}}$;
(2) $\Phi_{+}(\underline{\mathrm{G}})=(\mathrm{G},+)$, where $\mathrm{x}+\mathrm{y}=\mathrm{u}$ if and only if [xxyy] = (u,u); and
(3) $\Phi *(\underline{G})=(G, *)$, where $x * y=u$ if and only if $[\mathrm{x}(-\mathrm{x}) \mathrm{y}(-\mathrm{y})]=(\mathrm{u},-\mathrm{u})$.

If $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is a $(4,2)$-homomorphism, then, $\Phi_{+}(\mathrm{f})=\Phi_{*}(\mathrm{f})=\mathrm{f}$ and $\Phi_{2}(\mathrm{f}): \mathrm{G}^{2} \rightarrow\left(\mathrm{G}^{\prime}\right)^{2}$ is defined by $\Phi_{2}(\mathrm{f})(\mathrm{x}, \mathrm{y})=(\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y}))$.
$\mathbf{6}^{\mathbf{0}}$ By analogy with the notion of a chain complex of Abelian groups, two types of (4,2)chain complexes of commutative (4,2)-groups, introduced in [5], are defined as follows.

A weak $(4,2)$-chain complex, denoted by $\mathrm{w}(\mathrm{K}, \partial)$, is a sequence
$\ldots \leftarrow\left(\mathrm{K}_{\mathrm{n}-1},[]\right) \stackrel{\partial_{\mathrm{n}}}{\hookleftarrow}\left(\mathrm{K}_{\mathrm{n}},[]\right) \stackrel{\partial_{\mathrm{n}+1}}{\stackrel{ }{\hookleftarrow}}\left(\mathrm{~K}_{\mathrm{n}+1},[]\right) \leftarrow \ldots$ of commutative $(4,2)$-groups $\left(\mathrm{K}_{\mathrm{n}},[]\right)$, and $(4,2)$ homomorphisms $\partial_{\mathrm{n}}:\left(\mathrm{K}_{\mathrm{n}},[]\right) \rightarrow\left(\mathrm{K}_{\mathrm{n}-1},[]\right)$, such that for every integer $n, \partial_{n} \partial_{n+1}=0$, i.e. $\partial_{n} \partial_{n+1}$ is the zero homomorphism.
$7^{\mathbf{0}}$ If $\mathrm{w}(\mathrm{K}, \partial)$ is a weak (4,2)-chain complex, then $B_{n}=\operatorname{Im} \partial_{n+1}$ and $Z_{n}=\operatorname{ker} \partial_{n}$ are $(4,2)$ subgroups of K_{n}, and B_{n} is a (4,2)-subgroup of Z_{n}, for every integer n. In general, B_{n} is not a normal (4,2)-subgroup of Z_{n}.
$\mathbf{8}^{\mathbf{o}}$ A strong (4,2)-chain complex, denoted by $\mathrm{s}(\mathrm{K}, \partial)$, is a weak (4,2)-chain complex with the additional requirement that B_{n} is a normal (4,2)subgroup of Z_{n}, for every integer n.
$9^{\mathbf{0}}$ If $\mathrm{w}(\mathrm{K}, \partial)$ and $\mathrm{w}\left(\mathrm{K}^{\prime}, \partial^{\prime}\right)$ are weak $(4,2)$ chain complexes, then a $(4,2)$-chain map from
$\mathrm{w}(\mathrm{K}, \partial)$ to $\mathrm{w}\left(\mathrm{K}^{\prime}, \partial^{\prime}\right)$ is a sequence of (4,2)-homomorphisms

$$
\mathrm{f}_{\mathrm{n}}:\left(\mathrm{K}_{\mathrm{n}},[]\right) \rightarrow\left(\mathrm{K}_{\mathrm{n}}^{\prime},[]\right), \mathrm{n}-\text { integer }
$$

such that $\partial_{n}^{\prime} f_{n}=f_{n-1} \partial_{n}$, i.e. for every integer n, the following diagram commutes

$$
\begin{array}{cc}
\left(\mathrm{K}_{\mathrm{n}-1},[]\right) \stackrel{\partial_{\mathrm{n}}}{\longleftarrow} & \left(\mathrm{~K}_{\mathrm{n}},[]\right) \\
\downarrow \mathrm{f}_{\mathrm{n}-1} & \downarrow \mathrm{f}_{\mathrm{n}} \\
\left(\mathrm{~K}_{\mathrm{n}-1}^{\prime},[]\right) \stackrel{\partial_{\mathrm{n}}^{\prime}}{\hookleftarrow}\left(\mathrm{K}_{\mathrm{n}}^{\prime},[]\right)
\end{array}
$$

$\mathbf{1 0}^{\mathbf{0}}$ The weak (4,2)-chain complexes and (4,2)-homomorphisms, form a category, denoted by $(4,2)$-w $\partial \mathrm{K}$, whose subcategory is $(4,2)-\mathrm{s} \partial \mathrm{K}$ of the strong (4,2)-chain complexes and (4,2)-homomorphisms.
$\mathbf{1 1}^{0}$ Three functors, denoted by $\mathrm{F}_{2}, \mathrm{~F}_{+}$and F_{*} from the category $(4,2)-w \partial \mathrm{~K}$ to the category $\partial \mathrm{K}$ of chain complexes of Abelian groups are defined as follows.

For a weak $(4,2)$-chain complex $\mathrm{w}(\mathrm{K}, \partial)$:
(1) $\mathrm{F}_{2}(\mathrm{w}(\mathrm{K}, \partial))$ is the sequence of the groups $\Phi_{2}\left(\mathrm{~K}_{\mathrm{n}}\right)$ with the boundary operators $\Phi_{2}\left(\partial_{n}\right)$;
(2) $\mathrm{F}_{+}(\mathrm{w}(\mathrm{K}, \partial))$ is the sequence of the groups $\Phi_{+}\left(\mathrm{K}_{\mathrm{n}}\right)$ with the boundary operators $\Phi_{+}\left(\partial_{n}\right)$; and
(3) $\mathrm{F}_{*}(\mathrm{w}(\mathrm{K}, \partial))$ is the sequence of the groups $\Phi_{*}\left(\mathrm{~K}_{\mathrm{n}}\right)$ with the boundary operators $\Phi_{*}\left(\partial_{n}\right)$.

For a $(4,2)$-chain map $\mathrm{f}: \mathrm{w}(\mathrm{K}, \partial) \rightarrow \mathrm{w}\left(\mathrm{K}^{\prime}, \partial^{\prime}\right)$:
(1) $\mathrm{F}_{2}(\mathrm{f})$ is the sequence of the homomorphisms $\Phi_{2}\left(\mathrm{f}_{\mathrm{n}}\right): \Phi_{2}\left(\mathrm{~K}_{\mathrm{n}}\right) \rightarrow \Phi_{2}\left(\mathrm{~K}_{\mathrm{n}}{ }^{\prime}\right) ;$
(2) $\mathrm{F}_{+}(\mathrm{f})$ is the sequence of the homomorphisms $\Phi_{+}\left(\mathrm{f}_{\mathrm{n}}\right): \Phi_{+}\left(\mathrm{K}_{\mathrm{n}}\right) \rightarrow \Phi_{+}\left(\mathrm{K}_{\mathrm{n}}{ }^{\prime}\right)$; and
(3) $F *(f)$ is the sequence of the homomorphisms $\Phi_{*}\left(\mathrm{f}_{\mathrm{n}}\right): \Phi_{*}\left(\mathrm{~K}_{\mathrm{n}}\right) \rightarrow \Phi_{*}\left(\mathrm{~K}_{\mathrm{n}}{ }^{\prime}\right)$.
$\mathbf{1 2}^{\mathbf{0}}$ For any integer n , let $\mathrm{H}_{\mathrm{n}}: \partial \mathrm{K} \rightarrow A b$ be the functor such that for a chain complex $K=(K, \partial)$, $\mathrm{H}_{\mathrm{n}}(\mathrm{K})$ is the n -th homology group of K , and for a chain map $\mathrm{f}: \mathrm{K} \rightarrow \mathrm{K}^{\prime}, \mathrm{H}_{\mathrm{n}}(\mathrm{f}): \mathrm{H}_{\mathrm{n}}(\mathrm{K}) \rightarrow \mathrm{H}_{\mathrm{n}}\left(\mathrm{K}^{\prime}\right)$ is the induced homormphism.
$\mathbf{1 3}^{\mathbf{0}}$ For any integer n , by composing the functors $\mathrm{F}_{2}, \mathrm{~F}_{+}$and F_{*} with the functor H_{n}, three functors from $(4,2)-w \partial \mathrm{~K}$ to the category $A b$ are defined as follows.

Let $\mathrm{K}=\mathrm{w}(\mathrm{K}, \partial), \mathrm{K}^{\prime}=\mathrm{w}\left(\mathrm{K}^{\prime}, \partial^{\prime}\right)$ be two weak (4,2)-chain complexes and let $\mathrm{f}: \mathrm{K} \rightarrow \mathrm{K}^{\prime}$ be a chain map. Then:
(1) $\mathrm{H}_{\mathrm{n}, 2}(\mathrm{~K})=\mathrm{H}_{\mathrm{n}}\left(\mathrm{F}_{2}(\mathrm{~K})\right.$) and $\mathrm{H}_{\mathrm{n}, 2}(\mathrm{f})=\mathrm{H}_{\mathrm{n}}\left(\mathrm{F}_{2}(\mathrm{f})\right)$;
(2) $H_{n,+}(K)=H_{n}\left(F_{+}(K)\right)$ and $H_{n,+}(f)=H_{n}\left(F_{+}(f)\right)$; and
(3) $\mathrm{H}_{\mathrm{n}, *}(\mathrm{~K})=\mathrm{H}_{\mathrm{n}}\left(\mathrm{F}_{*}(\mathrm{~K})\right)$ and $\mathrm{H}_{\mathrm{n}, *} *(\mathrm{f})=\mathrm{H}_{\mathrm{n}}\left(\mathrm{F}_{*}(\mathrm{f})\right)$.

Since a strong (4,2)-chain complex $K=s(K, \partial)$ is also a weak (4,2)-chain complex, the above homology groups $\mathrm{H}_{\mathrm{n} 2},(\mathrm{~K}), \mathrm{H}_{\mathrm{n},+}(\mathrm{K})$ and $\mathrm{H}_{\mathrm{n}, *}(\mathrm{~K})$ are defined. Since for a strong (4,2)-chain complex $\mathrm{K}=\mathrm{s}(\mathrm{K}, \partial), \mathrm{B}_{\mathrm{n}}=\operatorname{Im} \partial_{\mathrm{n}+1}$ is a normal $(4,2)$-subgoup of
$Z_{n}=\operatorname{ker} \partial_{n}$, we have the (4,2)-factor group Z_{n} / B_{n}.
$\mathbf{1 4}^{\mathbf{0}}$ For any integer n , the functor $(4,2)-\mathrm{H}_{\mathrm{n}}$ from the category $(4,2)-\mathrm{s} \partial \mathrm{K}$ to the category $(4,2)-A b$ is defened as follows. For any strong $(4,2)$-chain complexes $\mathrm{K}=\mathrm{s}(\mathrm{K}, \partial)$, $(4,2)-\mathrm{H}_{\mathrm{n}}(\mathrm{K})$ is the (4,2)-factor group Z_{n} / B_{n}. It is shown in [5], that for a (4,2)chain map $\mathrm{f}: \mathrm{K} \rightarrow \mathrm{K}^{\prime}$, where K and K^{\prime} are strong (4,2)-chain complexes, the map (4,2)- $\mathrm{H}_{\mathrm{n}}(\mathrm{f})$ defined by $(4,2)-\mathrm{H}_{\mathrm{n}}(\mathrm{f})\left(\mathrm{x}^{\sim}\right)=(\mathrm{f}(\mathrm{x}))^{\sim}$, for $\mathrm{x} \in \operatorname{ker} \partial_{\mathrm{n}}$ is a $(4,2)-$ homomorphism from $(4,2)-\mathrm{H}_{\mathrm{n}}(\mathrm{K})$ to $(4,2)-\mathrm{H}_{\mathrm{n}}\left(\mathrm{K}^{\prime}\right)$.
$15^{\mathbf{0}}$ By composing the functors Φ_{2}, Φ_{+}and Φ_{*} from the category $(4,2)-A b$ to the category $A b$, with the functor $(4,2)-\mathrm{H}_{\mathrm{n}}$, three functors, $\Phi_{2} \circ(4,2)-\mathrm{H}_{\mathrm{n}}$, $\Phi_{+} \circ(4,2)-\mathrm{H}_{\mathrm{n}}$, and $\Phi_{*} \circ(4,2)-\mathrm{H}_{\mathrm{n}}$, from the category $(4,2)$-s $\partial \mathrm{K}$ to the category $A b$ are obtained.

Using the fact that $(4,2)-s \partial \mathrm{~K}$ is a subcategory of $(4,2)-w \partial K$, it is shown in [5], that: $\Phi_{2} \circ(4,2)-\mathrm{H}_{\mathrm{n}}$
is the restriction of $\mathrm{H}_{\mathrm{n}, 2}$ on $(4,2)-\mathrm{s} \partial \mathrm{K} ; \Phi_{+} \circ(4,2)-\mathrm{H}_{\mathrm{n}}$ is the restriction of $\mathrm{H}_{\mathrm{n},+}$ on $(4,2)-\mathrm{s} \partial \mathrm{K}$; and that $\Phi_{*} \circ(4,2)-\mathrm{H}_{\mathrm{n}}$ is the restriction of $\mathrm{H}_{\mathrm{n}, *}$ on $(4,2)-\mathrm{s} \partial \mathrm{K}$.

(4,2)-CHAIN HOMOTOPY

Let $\mathrm{K}=\mathrm{w}(\mathrm{K}, \partial)$ and $\mathrm{K}^{\prime}=\mathrm{w}\left(\mathrm{K}^{\prime}, \partial^{\prime}\right)$ be two weak (4,2)-chain complexes, and let $\mathrm{f}, \mathrm{g}: \mathrm{K} \rightarrow \mathrm{K}^{\prime}$ be two $(4,2)$-chain maps.

Let s be a sequence of (4,2)-homomorphisms: $\mathrm{s}_{\mathrm{n}}:\left(\mathrm{K}_{\mathrm{n}},[]\right) \rightarrow\left(\mathrm{K}_{\mathrm{n}+1},[]\right)$.

The sequence s induces a sequence $\Phi_{2}(\mathrm{~s})$ of homomorhisms

$$
\left(\Phi_{2}(\mathrm{~s})\right)_{\mathrm{n}}=\Phi_{2}\left(\mathrm{~s}_{\mathrm{n}}\right):\left(\left(\mathrm{K}_{\mathrm{n}}\right)^{2}, \circ\right) \rightarrow\left(\left(\mathrm{K}_{\mathrm{n}+1}^{\prime}\right)^{2}, \circ\right)
$$

Definition 1. Let K, K^{\prime}, f, g and s be as above. The sequence s is said to be a (4,2)-chain homotopy from \mathbf{f} to g , denoted by s : $\mathrm{f} \alpha \mathrm{g}$, if for every integer n and any $x, y \in K_{n}$:
(A)

$$
\left[\partial_{n+1}^{\prime}\left(s_{n}(x)\right) \partial_{n_{n+1}}^{\prime}\left(\mathrm{s}_{\mathrm{n}}(\mathrm{y})\right) \mathrm{s}_{\mathrm{n}-1}\left(\partial_{\mathrm{n}}(\mathrm{x})\right) \mathrm{s}_{\mathrm{n}-1}\left(\partial_{\mathrm{n}}(\mathrm{y})\right) \mathrm{g}_{\mathrm{n}}(\mathrm{x}) \mathrm{g}_{\mathrm{n}}(\mathrm{y})\right]=\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x}), \mathrm{f}_{\mathrm{n}}(\mathrm{y})\right)
$$

Using the operation \circ from $\left(\left(\mathrm{K}_{\mathrm{n}}\right)^{2}, \circ\right)$, the condition (\mathbf{A}) can be written in the form
(B)

$$
\Phi_{2}\left(\partial_{\mathrm{n}+1}^{\prime}\right)\left(\Phi_{2}\left(\mathrm{~s}_{\mathrm{n}}\right)(\mathrm{x}, \mathrm{y})\right) \circ \Phi_{2}\left(\mathrm{~s}_{\mathrm{n}-1}\right)\left(\Phi_{2}\left(\partial_{\mathrm{n}}\right)(\mathrm{x}, \mathrm{y})\right)=\Phi_{2}\left(\mathrm{f}_{\mathrm{n}}\right)(\mathrm{x}, \mathrm{y}) \circ\left(\Phi_{2}\left(\mathrm{~g}_{\mathrm{n}}\right)(\mathrm{x}, \mathrm{y})\right)^{-1}
$$

For every (4,2)-chain map, if for every integer n, we take s_{n} to be the zero (4,2)-homomorphism, i.e. $\mathrm{s}_{\mathrm{n}}(\mathrm{x})=0$, for every x , then, directly from the definition, it follows that s is a $(4,2)$-chain homotopy from f to f. Hence, the relation α is a reflexive relation.

In general, the relation α is not symmetric, i.e. the existence of a (4,2)-chain homotopy from f to g , does not imply the existence of a (4,2)-chain homotopy from g to f. Also, in general, the relation α is not transitive, i.e. the existence of $(4,2)$-chain homotopies from f to g and from g to h, does not imply the existence of $(4,2)$-chain homotopy from f to h.

Although the relation α is not an equivalence relation, it satisfies several properties that will allow us to extend it to an equivalence relation, analogous to the equivalence relation of chain homotopy in the category $\partial \mathrm{K}$ of chain complexes of commutative groups.

Next, for $(4,2)$-chain homotopy s, let: $F_{2}(s)$ be the sequence defined by $\left(\mathrm{F}_{2}(\mathrm{~s})\right)_{\mathrm{n}}=\Phi_{2}\left(\mathrm{~s}_{\mathrm{n}}\right) ; \mathrm{F}_{+}(\mathrm{s})$ be the sequence defined by $\left(\mathrm{F}_{+}(\mathrm{s})\right)_{\mathrm{n}}=\Phi_{+}\left(\mathrm{s}_{\mathrm{n}}\right)=\mathrm{s}_{\mathrm{n}}$; and $\mathrm{F} *(\mathrm{~s})$ be the sequence defined by $\left(\mathrm{F}_{*}(\mathrm{~s})\right)_{\mathrm{n}}=\Phi *\left(\mathrm{~S}_{\mathrm{n}}\right)$.

Proposition 1. Let $\mathrm{f}, \mathrm{g}: \mathrm{K} \rightarrow \mathrm{K}$ ' be $(4,2)$-chain maps and let s be a (4,2)-chain homotopy from f to g , i.e. $\mathrm{s}: \mathrm{f} \alpha \mathrm{g}$. Then, in the category $\partial \mathrm{K}$, where the chain homotopy is an equivalence relation, $\mathrm{F}_{2}(\mathrm{~s}), \mathrm{F}_{+}(\mathrm{s})$ and $\mathrm{F}_{*}(\mathrm{~s})$ are chain homotopies, i.e. $\mathrm{F}_{2}(\mathrm{~s}): \mathrm{F}_{2}(\mathrm{f}) \sim \mathrm{F}_{2}(\mathrm{~g}) ; \mathrm{F}_{+}(\mathrm{s}): \mathrm{f} \sim \mathrm{g} ;$ and $\mathrm{F}_{*}(\mathrm{~s}): \mathrm{f} \sim \mathrm{g}$.

Proof. The condition (B) implies that $\mathrm{F}_{2}(\mathrm{~s})$ is a chain homotopy from $F_{2}(f)$ to $F_{2}(g)$. Although, in general, a (4,2)-chain homotopy from g to f, does not exist, the sequence $\psi_{\mathrm{n}}:\left(\mathrm{K}_{\mathrm{n}}\right)^{2} \rightarrow\left(\mathrm{~K}_{\mathrm{n}+1}\right)^{2}$ defined by $\psi(\mathrm{x}, \mathrm{y})=\left(\mathrm{s}_{\mathrm{n}}(\mathrm{x}), \mathrm{s}_{\mathrm{n}}(\mathrm{y})\right)^{-1}$, is a chain homotopy from $\mathrm{F}_{2}(\mathrm{~g})$ to $\mathrm{F}_{2}(\mathrm{f})$. For the transitivity, let s ' be a $(4,2)$ chain homotopy from g to h. Then the sequence $\Psi_{\mathrm{n}}:\left(\mathrm{K}_{\mathrm{n}}\right)^{2} \rightarrow\left(\mathrm{~K}_{\mathrm{n}+1}\right)^{2}$ defined by

$$
\Psi(\mathrm{x}, \mathrm{y})=\left(\mathrm{s}_{\mathrm{n}}(\mathrm{x}), \mathrm{s}_{\mathrm{n}}(\mathrm{y})\right) \circ\left(\mathrm{s}^{\prime}{ }_{\mathrm{n}}(\mathrm{x}), \mathrm{s}^{\prime}{ }_{\mathrm{n}}(\mathrm{y})\right)
$$

is a chain homotopy from $\mathrm{F}_{2}(\mathrm{f})$ to $\mathrm{F}_{2}(\mathrm{~h})$.
Next, we look at $\mathrm{F}_{+}(\mathrm{s})$. By setting $\mathrm{y}=\mathrm{x}$ in (\mathbf{A}) we obtain $\left[\operatorname{uuvvg}_{n}(x) g_{n}(x)\right]=\left(f_{n}(x), f_{n}(x)\right)$, where $u=\partial^{\prime}{ }_{n+1}\left(s_{n}(x)\right)$ and $v=s_{n-1}\left(\partial_{n}(x)\right)$.
This implies that $u+v+g_{n}(x)=f_{n}(x)$, i.e.

$$
\partial_{n+1}^{\prime}\left(\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right)+\mathrm{s}_{\mathrm{n}-1}\left(\partial_{\mathrm{n}}(\mathrm{x})\right)=\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x})
$$

Hence, s is a chain homotopy from f to g, i.e. from $\mathrm{F}_{+}(\mathrm{f})$ to $\mathrm{F}_{+}(\mathrm{g})$.

The sequence -s , defined by $(-\mathrm{s})_{\mathrm{n}}(\mathrm{x})=\mathrm{s}_{\mathrm{n}}(-\mathrm{x})$ $=-s_{n}(x)$, is a chain homotopy from $F_{+}(g)$ to $F_{+}(f)$.

If s ' is a $(4,2)$-chain homotopy from g to h, the sequence $s+s^{\prime}$ defined by $\left(s^{\prime}+s^{\prime}\right)_{n}(x)=s_{n}(x)+s^{\prime}{ }_{n}(x)$ is a chain homotopy from $\mathrm{F}_{+}(\mathrm{f})$ to $\mathrm{F}_{+}(\mathrm{h})$.

The discussion for $F_{*}(s)$ is similar to the discussion for $\mathrm{F}_{+}(\mathrm{s})$. Using the notation for u and v as above, by setting $\mathrm{y}=-\mathrm{x}$ in (A) we obtain $\left.\left[u^{\prime}{ }^{\prime} v v^{\prime} g_{n}(x)\right) g_{n}(-x)\right]=\left(f_{n}(x), f_{n}(-x)\right)$, where

$$
u^{\prime}=\partial_{\mathrm{n}+1}^{\prime}\left(\mathrm{s}_{\mathrm{n}}(-\mathrm{x})\right) \text { and } \mathrm{v}^{\prime}=\mathrm{s}_{\mathrm{n}-1}\left(\partial_{\mathrm{n}}(-\mathrm{x})\right)
$$

Since $\mathrm{s}_{\mathrm{n}}, \partial_{\mathrm{n}}, \partial_{\mathrm{n}+1}^{\prime}$ and g_{n} are (4,2)-homomorphisms, it follows that $u^{\prime}=\partial^{\prime}{ }_{n+1}\left(s_{n}(-x)\right)=-\partial^{\prime}{ }_{n+1}\left(\mathrm{~s}_{\mathrm{n}}(\mathrm{x})\right)=-\mathrm{u}$,
$\mathrm{v}^{\prime}=\mathrm{s}_{\mathrm{n}-1}\left(\partial_{\mathrm{n}}(-\mathrm{x})\right)=-\mathrm{s}_{\mathrm{n}-1}\left(\partial_{\mathrm{n}}(\mathrm{x})\right)=-\mathrm{v}$ and $\mathrm{g}_{\mathrm{n}}(-\mathrm{x})=-\mathrm{g}(\mathrm{x})$, abd so, $\left.\left[u(-u) v(-v) g_{n}(x)\right) g_{n}(-x)\right]=\left(f_{n}(x), f_{n}(-x)\right)$. This implies that $u * v * g_{n}(x)=f_{n}(x)$, i.e.
$\partial^{\prime}{ }_{n+1}\left(\mathrm{~S}_{\mathrm{n}}(\mathrm{x})\right) * \mathrm{~S}_{\mathrm{n}-1}\left(\partial_{\mathrm{n}}(\mathrm{x})\right)=\mathrm{f}_{\mathrm{n}}(\mathrm{x}) *\left(-\mathrm{g}_{\mathrm{n}}(\mathrm{x})\right)$.
Hence, s is a chain homotopy from f to g, i.e. from $F_{*}(\mathrm{f})$ to $\mathrm{F}_{*}(\mathrm{~g})$.

The sequence -s , defined by $(-\mathrm{s})_{\mathrm{n}}(\mathrm{x})=\mathrm{s}_{\mathrm{n}}(-\mathrm{x})$ $=-s_{n}(x)$, is a chain homotopy from $F_{*}(g)$ to $F_{*}(f)$.

If s ' is a $(4,2)$-chain homotopy from g to h, the sequence $s_{*} * s^{\prime}$ defined by $\left(s_{*} s^{\prime}\right)_{n}(x)=s_{n}(x) * s_{n}(x)$ is a chain homotopy from $F_{*}(f)$ to $F_{*}(h)$.

Corollary 1. Let $\mathrm{f}, \mathrm{g}: \mathrm{K} \rightarrow \mathrm{K}^{\prime}$ be $(4,2)$-chain maps. A sequence s, of (4,2)-homomorphisms

$$
\mathrm{s}_{\mathrm{n}}:\left(\mathrm{K}_{\mathrm{n}},[]\right) \rightarrow\left(\mathrm{K}_{\mathrm{n}+1}^{\prime},[]\right)
$$

is a (4,2)-chain homotopy from f to g, i.e. $s: ~ f \alpha g$
if and only if the sequence $\mathrm{F}_{2}(\mathrm{~s})$ of homomorphisms $\left(\mathrm{F}_{2}(\mathrm{~s})\right)_{\mathrm{n}}=\Phi_{2}\left(\mathrm{~s}_{\mathrm{n}}\right)$ is a chain homotopy from $\mathrm{F}_{2}(\mathrm{f})$ to $\mathrm{F}_{2}(\mathrm{~g})$, i.e. $\mathrm{F}_{2}(\mathrm{~s}): \mathrm{F}_{2}(\mathrm{f}) \sim \mathrm{F}_{2}(\mathrm{~g})$.

Proof. The proof, follows from Proposition 1 and the condition (B). \square

Proposition 2. Let $\mathrm{K}=\mathrm{w}(\mathrm{K}, \partial), \mathrm{K}^{\prime}=\mathrm{w}\left(\mathrm{K}^{\prime}, \partial^{\prime}\right)$ and $K "=w(K ", \partial ")$ be weak $(4,2)$-chain complexes.
(a) If $\mathrm{f}, \mathrm{g}: \mathrm{K} \rightarrow \mathrm{K}^{\prime}$ and $\mathrm{h}: \mathrm{K}^{\prime} \rightarrow \mathrm{K}^{\prime \prime}$ are (4,2)-chain maps, and $\mathrm{f} \alpha \mathrm{g}$, then hf $\alpha \mathrm{hg}$.
(b) If $\mathrm{f}: \mathrm{K} \rightarrow \mathrm{K}^{\prime}$ and $\mathrm{g}, \mathrm{h}: \mathrm{K}^{\prime} \rightarrow \mathrm{K}^{\prime \prime}$ are (4,2)-chain maps, and $h \alpha \mathrm{~g}$, then hf $\alpha \mathrm{gf}$.

Proof. (a) Let s be a (4,2)-chain homotopy from f to g , i.e. s : $\mathrm{f} \alpha \mathrm{g}$. Using the fact that h_{n} is a (4,2)-homomorphism and applying it to (A), we obtain that

$$
\left[(\mathrm { h } _ { \mathrm { n } } \partial _ { \mathrm { n } + 1 } ^ { \prime } \mathrm { s } _ { \mathrm { n } } (\mathrm { x })) (\mathrm { h } _ { \mathrm { n } } \partial ^ { \prime } { } _ { \mathrm { n } + 1 } \mathrm { s } _ { \mathrm { n } } (\mathrm { y })) (\mathrm { h } _ { \mathrm { n } } \mathrm { s } _ { \mathrm { n } - 1 } \partial _ { \mathrm { n } } (\mathrm { x })) \left(\mathrm{h}_{\mathrm{n}}\left(\mathrm{~s}_{\mathrm{n}-1}\left(\partial_{\mathrm{n}}(\mathrm{y})\right)\left(\mathrm{h}_{\mathrm{n}} \mathrm{~g}_{\mathrm{n}}(\mathrm{x})\right)\left(\mathrm{h}_{\mathrm{n}} \mathrm{~g}_{\mathrm{n}}(\mathrm{y})\right)\right]=\left(\left(\mathrm{h}_{\mathrm{n}} \mathrm{f}_{\mathrm{n}}(\mathrm{x})\right),\left(\mathrm{h}_{\mathrm{n}} \mathrm{f}_{\mathrm{n}}(\mathrm{y})\right)\right)\right.\right.
$$

Next, using the fact that h is a $(4,2)$-chain map, i.e. that $h_{n} \partial{ }_{n+1}=\partial{ }^{\prime}{ }_{n+1} h_{n+1}$, we obtain that

$$
\left[\left(\partial ^ { \prime \prime } { } _ { n + 1 } (\mathrm { h } _ { \mathrm { n } + 1 } \mathrm { s } _ { \mathrm { n } } (\mathrm { x })) \left(\partial ^ { \prime \prime } { } _ { \mathrm { n } + 1 } (\mathrm { h } _ { \mathrm { n } + 1 } \mathrm { s } _ { \mathrm { n } } (\mathrm { y })) \left(\mathrm{h}_{\mathrm{n}} \mathrm{~s}_{\mathrm{n}-1}\left(\partial_{\mathrm{n}}(\mathrm{x})\right)\left(\mathrm{h}_{\mathrm{n}} \mathrm{~s}_{\mathrm{n}-1}\left(\partial_{\mathrm{n}}(\mathrm{y})\right)\left(\mathrm{h}_{\mathrm{n}} \mathrm{~g}_{\mathrm{n}}(\mathrm{x})\right)\left(\mathrm{h}_{\mathrm{n}} \mathrm{~g}_{\mathrm{n}}(\mathrm{y})\right)\right]=\left(\left(\mathrm{h}_{\mathrm{n}} \mathrm{f}_{\mathrm{n}}(\mathrm{x})\right),\left(\mathrm{h}_{\mathrm{n}} \mathrm{f}_{\mathrm{n}}(\mathrm{y})\right)\right) .\right.\right.\right.\right.
$$

The last equality is the condition (\mathbf{A}) for the chain maps hf and hg and for the sequence hs of (4,2)-homomorpisms defined by (hs) $\mathrm{n}_{\mathrm{n}}=\mathrm{h}_{\mathrm{n}+1} \mathrm{~s}_{\mathrm{n}}$. All this implies that hs: hf $\alpha \mathrm{hg}$.
(b) The proof is similar to the prof of (a). Let s be a $(4,2)$-chain homotopy from g to h. Then the sequence sf of $(4,2)$-homomorpisms defined by $(f s)_{n}=f_{n} s_{n}$ is a (4,2)-chain homotopy from $g f$ to $h f$, i.e. fs: gf $\alpha \mathrm{hf}$.

We denote the symmetric and transititive closure of the relation α (i.e. the smallest equivalence relation containing α) by \sim. With this, the relation \sim is an equivalence relation for the $(4,2)$ chain maps in the category $(4,2)-w \partial K$, and also in the category $(4,2)-s \partial \mathrm{~K}$.

Remark 1. The definition of \sim implies that for two (4,2)-chain maps f and $\mathrm{g}, \mathrm{f} \sim \mathrm{g}$ if and only if there are $(4,2)$-chain maps $\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}, \ldots, \mathrm{~h}_{\mathrm{m}}, \mathrm{h}_{\mathrm{m}+1}$ such that for any $j \in\{1,2,3, \ldots, m\}, h_{j} \alpha h_{j+1}$ or $h_{j+1} \alpha$ $\mathrm{h}_{\mathrm{j}} ; \quad \mathrm{f}=\mathrm{h}_{1}$; and $\mathrm{g}=\mathrm{h}_{\mathrm{m}+1}$.

Definition 2. Two (4,2)-chain maps f and g are said to be $(\mathbf{4 , 2})$-homotopic if $\mathrm{f} \sim \mathrm{g}$. $\mathrm{A}(4,2)$ chain map $f: K \rightarrow K^{\prime}$ is said to be a (4,2)homotopy equivalence if there is a (4,2)-chain map $\mathrm{g}: \mathrm{K}^{\prime} \rightarrow \mathrm{K}$ such that $\mathrm{gf} \sim 1_{\mathrm{K}}$ and $\mathrm{fg} \sim 1_{\mathrm{K}}$, where 1_{K} and 1_{K}, are the identity $(4,2)$-chain maps for K and K^{\prime} respectively. Two weak (4,2)-chain complexes $\mathrm{K}=\mathrm{w}(\mathrm{K}, \partial), \mathrm{K}^{\prime}=\mathrm{w}\left(\mathrm{K}^{\prime}, \partial^{\prime}\right)$ are said to be (4,2)-homotopy equivalent, denoted by $K \sim K^{\prime}$, if there is a (4,2)-homotopy equivalence $\mathrm{f}: \mathrm{K} \rightarrow \mathrm{K}^{\prime}$. Two strong $(4,2)$-chain complexes are said to be
(4,2)-homotopy equivalent, if they are (4,2)-homotopy equivalent as weak $(4,2)$-chain complexes.

Proposition 3. Let K, K', K" be $(4,2)$-chain complexes, and let $\mathrm{g}, \mathrm{h}: \mathrm{K} \rightarrow \mathrm{K}^{\prime}, \mathrm{g}^{\prime}, \mathrm{h}^{\prime}: \mathrm{K}^{\prime} \rightarrow \mathrm{K} \prime$ " be (4,2)-chain maps, such that $g \sim h$ and $g^{\prime} \sim h$ '. Then, the compositions gg', hh': $\mathrm{K} \rightarrow \mathrm{K}$ " are (4,2)-homotopic, i.e. $\mathrm{gg}{ }^{\prime} \sim \mathrm{hh}$ '.

Proof. Proposition 2 (a) and Remark 1 imply that $g^{\prime} g \sim g ' h$, and Proposition 2 (b) and Remark 1 imply that g'h \sim h'h. Thus, gg' \sim hh'. \square

For a (4,2)-chain map h, we denote the equivalence class $h^{\sim}=\{g \mid g \sim h\}$, by [h].

Proposition 3 implies the following:
Corollary 2. All $\mathrm{w}(\mathrm{K}, \partial)$, the weak (4,2)chain complexes as objects and all [h], the (4,2)-homotopy classes of $(4,2)$-chain maps, form a category, denoted by $(4,2)$-hw $\partial \mathrm{K}$. All strong (4,2)-chain complexes and all (4,2)-homotopy classes of $(4,2)$ chain maps, form a subcategory of (4,2)-hw $\partial \mathrm{K}$, denoted by (4,2)-hs $\partial \mathrm{K}$.

Proposition 4. If h,g are two (4,2)-homo-topic (4,2)-chain maps, i.e. $h \sim g$, then their images by the functors $\mathrm{F}_{2}, \mathrm{~F}_{+}$and F_{*} in the category of chain complexes $\partial \mathrm{K}$ are homotopic maps, i.e. $\mathrm{F}_{2}(\mathrm{~h}) \sim \mathrm{F}_{2}(\mathrm{~g})$, $\mathrm{F}_{+}(\mathrm{h}) \sim \mathrm{F}_{+}(\mathrm{g})$ and $\mathrm{F}_{*}(\mathrm{~h}) \sim \mathrm{F}_{*}(\mathrm{~g})$.

Proof. The proof follows from Remark 1 and Proposition 1. \square

Proposition 4 implies the following:
Corollary 3. The functors F_{2}, F_{+}and F_{*} produce three functors, denoted by the same notation, from the category $(4,2)$-hw $\partial \mathrm{K}$ to the cate-
gory $\mathrm{h} \partial \mathrm{K}$, whose objects are the chain complexes of commutative groups, and the morphisms are the homotopy classes of chain maps.

Proposition 5. If h,g are two (4,2)-homotopic (4,2)-chain maps, then their images by the homology functors $\mathrm{H}_{\mathrm{n}, 2}, \mathrm{H}_{\mathrm{n},+}$ and $\mathrm{H}_{\mathrm{n}, *}$ are equal, i.e. $\mathrm{H}_{\mathrm{n}, 2}(\mathrm{~h})=\mathrm{H}_{\mathrm{n}, 2}(\mathrm{~g}), \mathrm{H}_{\mathrm{n},+}(\mathrm{h})=\mathrm{H}_{\mathrm{n},+}(\mathrm{g})$ and $\mathrm{H}_{\mathrm{n}, *}(\mathrm{~h})=\mathrm{H}_{\mathrm{n}, *}(\mathrm{~g})$.

Proof. The proof follows from Proposition 4 together with the fact that homotopic chain maps in the category $\partial \mathrm{K}$ have the same images by the homology functors H_{n}. \square

Proposition 6. Let $\mathrm{K}=\mathrm{w}(\mathrm{K}, \partial), \mathrm{K}^{\prime}=\mathrm{w}\left(\mathrm{K}^{\prime}, \partial^{\prime}\right)$ be two strong (4,2)-chain complexes and let $h, g: K \rightarrow K^{\prime}$ be (4,2)-homotopic (4,2)-chain maps. Then the $(4,2)$-homomorphisms $(4,2)-\mathrm{H}_{\mathrm{n}}(\mathrm{h})$ and $(4,2)-\mathrm{H}_{\mathrm{n}}(\mathrm{g})$ are equal.

Proof. Since $(4,2)-H_{n}(K)=\operatorname{ker} \partial_{n} / \operatorname{Im} \partial_{n+1}$ and $(4,2)-H_{n}\left(K^{\prime}\right)=k e r \partial^{\prime} /{ }_{n} / \partial^{\prime}{ }^{\prime}{ }_{n+1}$, it is sufficient to show that for any $x \in \operatorname{ker} \partial_{n}, h_{n}(x) \sim g_{n}(x)$, where \sim is the equivalence relation defined in $4^{\mathbf{0}}$, for $G=k e r \partial{ }^{\prime}{ }_{n}$ and $\mathrm{H}=\mathrm{im} \partial^{\prime}{ }_{\mathrm{n}+1}$, i.e. it is sufficient to show that:
$h_{n}(x)-g_{n}(x) \in \operatorname{im} \partial^{\prime}{ }_{n+1}$, for any $x \in \operatorname{ker} \partial_{n}$.
By Remark 1, it is sufficient to consider the case when $\mathrm{h} \alpha \mathrm{g}$. Let s be a $(4,2)$-chain homotopy from h to g. Then, Proposition 1 implies that $F_{+}(h)$ and $\mathrm{F}_{+}(\mathrm{g})$ are chain homotopic, i.e. that

$$
\partial_{\mathrm{n}+1}^{\prime}\left(\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right)+\mathrm{s}_{\mathrm{n}-1}\left(\partial_{\mathrm{n}}(\mathrm{x})\right)=\mathrm{h}_{\mathrm{n}}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x})
$$

for every integer n and any $x \in K_{n}$. This, together with the fact that $\partial_{\mathrm{n}}(\mathrm{x})=0$ for $\mathrm{x} \in \mathrm{ker} \partial_{\mathrm{n}}$ implies that
$\mathrm{h}_{\mathrm{n}}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x})=\partial_{\mathrm{n}+1}^{\prime}\left(\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right)+0=\partial^{\prime}{ }_{\mathrm{n}+1}\left(\mathrm{~s}_{\mathrm{n}}(\mathrm{x})\right)$, i.e. that $\mathrm{h}_{\mathrm{n}}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x}) \in \mathrm{im} \partial^{\prime}{ }_{\mathrm{n}+1} . \square$

As a consequence of Propositions 5 an 6, we obtain the following corollaries.

Corollary 4. (a) If h is a $(4,2)$-homotopy equivalence in $(4,2)-w \partial K$, then $H_{n, 2}(h), H_{n,+}(h)$ and $\mathrm{H}_{\mathrm{n}, *}(\mathrm{~h})$ are isomorphisms.
(b) If h is a (4,2)-homotopy equivalence in $(4,2)-s \partial \mathrm{~K}$, then $(4,2)-\mathrm{H}_{\mathrm{n}}(\mathrm{h})$ is a $(4,2)$-isomorphism.

Corollary 5. If K and K^{\prime} are $(4,2)$-homotopy equivalent (4,2)-chain complexes, then:
(1) $\mathrm{H}_{\mathrm{n}, 2}(\mathrm{~K})$ and $\mathrm{H}_{\mathrm{n}, 2}\left(\mathrm{~K}^{\prime}\right)$ are isomorphic groups;
(2) $H_{n,+}(K)$ and $H_{n,+}\left(K^{\prime}\right)$ are isomorphic groups; and
(3) $H_{n, *}(K)$ and $H_{n, *}\left(K^{\prime}\right)$ are isomorphic groups.

Moreover, if K and K^{\prime} are strong (4,2)-chain complexes, then $(4,2)-\mathrm{H}_{\mathrm{n}}(\mathrm{K})$ and $(4,2)-\mathrm{H}_{\mathrm{n}}\left(\mathrm{K}^{\prime}\right)$ are isomorphic $(4,2)$-commutative groups.

REFERENCES

[1] G. Čupona, D. Dimovski, On a class of vector valued groups; Proc. Conf. Alg. and Logic, Zagreb, (1984), pp.29-37.
[2] D. Dimovski, S. Ilić, Commutative ($2 \mathrm{~m}, \mathrm{~m}$)-groups. Vector Valued Semigroups and Groups, MANU, Skopje, 1988, 79-90.
[3] D. Dimovski, S. Ilić, Free commutative (2m,m)groups, Matemat. bilten, Skopje, 1989, pp. 25-34.
[4] A. Dold, Algebraic Topology, Springer-Verlag, Berlin-Heidelberg-New York, (1972).
[5] D. Dimovski, A. Ahmeti, (4,2)-Homology groups, Contributions, Sect. Math. Tech. Sci., MANU, XXI, 1/2 (2000), pp.33-46

(4,2)-ВЕРИЖНА ХОМОТОПИЈА

Ајет Ахмети ${ }^{1}$, Дончо Димовски ${ }^{2}$
${ }^{1}$ У ниверзитет Приштина, Приштина, Косово
${ }^{2}$ Институт за математика, Природно-математички факултет, Универзитет „Св. Кирил и Методиј", Скопје, Република Македонија

Разгледувана е (4,2)-верижна хомотопија за (4,2)-верижни пресликувања помеѓу (4,2)-верижни комплекси (слаби или јаки) и докажано е дека ако f и g се $(4,2)$-верижно хомотопни (4,2)-верижни пресликувања, тие индуцираат исти хомоморфизми на (4,2)-хомолошките групи од соодветните $(4,2)$-верижни комплекси.

Клучни зборови: комутативни (4,2)-групи; слаб (4,2)-верижен комплекс; јак (4,2)-верижен комплекс; $(4,2)$-верижно пресликување; $(4,2)$-верижна хомотопија

