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prove that if f and g are (4,2)-chain homotopic, then they induce the same homomorphisms on the (4,2)-homology 

groups for  the correspondent (4,2)-chain complexes. 
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INTRODUCTION 
 

The notions of (4,2)-chain complexes and 
(4,2)-chain homology groups were introduced and 

examined in [5]. In this paper we consider a notion 
of a (4,2)-chain homotopy, analogouos to the usual 
notion of a chain homotopy for chain complexes. 
Although the introduced notion of a (4,2)-chain 
homotopy, in general, does not behave in the same 
way as the usual chain homotopy (for example, the 

relation among (4,2)-chain maps defined by (4,2)-
chain homotopies is not an equivalence), it produces 
the same results  on the (4,2)-homology groups. 

For the usual notions about chain complexes 

of Abelian groups, chain homotopy and homology 

groups we refer to [4]. We recall the basic notions 

and properties about (4,2)-groups and (4,2)-chain 

complexes from  [1], [2], [3] and [5]. 

1o A (4,2)-semigroup is a pair (G,[ ]), where 

G is a nonempty set and [ ]: G4  G2 is a (4,2)-

operation, such that for any x,y,z,t,u,v  
G,  

 [[xyzt]uv] = [x[yztu]v] = [xy[ztuv]], 

i.e. [ ] is (4,2)-associative.  

Since the (4,2)-operation is associative, we 

use the notation [xyztuv] for [[xyzt]uv]. 

For (4,2)-semigroups (G,[ ]), (G’,[ ]’), a 

(4,2)-homomorphism is a map f: G  G’ such  that  

[f(x)f(y)f(z)f(t)] = (f(u),f(v)), where (u,v) = [xyzt] 

for any x,y,z,tG.  

Any (4,2)-semigroup (G,[ ]) induces a semi-

group ),G( 2  , where “ ” is the binary operation 

on G2
 defined by:  

(x,y) (u,v)=[xyuv], 

for any (x,y),(u,v)G
2
. 

We say that a (4,2)-semigroup (G,[ ]) is a 

commutative (4,2)-group if ),G( 2   is a commuta-

tive group.  

2
o 

Let (G,[ ]), be a commutative (4,2)-group. 

Then there is 0G and for each xG, there is a 

unique element –xG, such that for any x,y,z,t
 
G:  

(a) [xyzt] = [zyxt] = [xtzy] = [ztxy]; 

(b) if [xyzt] = (u,v), then [yxzt] = (v,u);  

(c) [00xy] = (x,y) and [xx(-x)(-x)] = (0,0); 

(d) if [xxyy] = (u,v), then u = v;  

(e) if [x(–x)y(–y)] = (u,v), then  v = –u; 

(f) the neutral element in ),G( 2   is (0,0); and  

(g) the inverse element for (x,y) ),G( 2   is the ele-

ment (x,y)
– 1

 = [yx(–x)(–x)(–y)(–y)]. 

3
o
 A subset H of G, for a given commutative 

(4,2)-group (G,[ ]), is a (4,2)-subgroup, if  u,vH, 

for any x,y,z,tH with  [xyzt] = (u,v).  
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For a (4,2)-subgroup (H,[ ]) of a commuta-

tive (4,2)-group (G,[ ]), in general, there is no way 

of defining a (4,2)-factor group, but for normal 

(4,2)-subgoups (4,2)-factor groups are defined. 

4
o
 A (4,2)-subgroup (H,[ ]) a of a commu-

tative (4,2)-group (G,[ ]) is said to be normal, if  

[x1x2H
2
] = [y1y2H

2
] [xjxjH

2
] = [yjyjH

2
], 

for any x1,x2,y1,y2G, and j=1,2, where   

[xyH
2
] = { [xyuv] | u,vH }. 

If (H,[ ]) is a normal (4,2)-subgroup of a 

commutative (4,2)-group (G,[ ]), the (4,2)-factor 

group (G/H,[ ]) is defined by: G/H = { x
~
 | xG}, 

where ~ is the equivalence relation on G defined by 

x~y [xxH
2

] = [yyH
2
]  i.e. x – yH, 

and [x
~
y

~
z

~
t
~
] = (u

~
,v

~
) for [xyzt] = (u,v). 

5
o
 The commutative (4,2)-groups and (4,2)-

homomorphisms, form the category (4,2)-Ab.  

Three functors, denoted by 2, + and *  

from the category (4,2)-Ab to the category Ab of 

commutative groups are defined as follows.  

For a commutative (4,2)-group G = (G,[ ]):   

(1) 2(G) is the group ),G( 2  , defined in 1
o
;  

(2) +(G) = (G,+), where x+y =u  if and only if 

[xxyy] = (u,u); and  

(3) *(G) = (G,*), where x * y = u  if and only if 

[x(–x)y(–y)] = (u,–u).  

If f:G
 
 G’ is a (4,2)-homomorphism, then, 

+(f ) = *(f ) = f and 2(f ):G
2 
 (G’)

2
 is defined 

by 2(f )(x,y) = (f(x),f(y)). 

6
o
 By analogy with the notion of a chain 

complex of Abelian groups, two types of (4,2)-

chain complexes of commutative (4,2)-groups, 

introduced in [5], are defined as follows. 

A weak (4,2)-chain complex, denoted by  

w(K,) , is a sequence 

   


 ])[,K()][,K(])[,K( 1n
1n

n
n

1n

of commutative (4,2)-groups
 ])[,K( n

, and (4,2)-

homomorphisms ])[,K(])[,K(: 1nnn  , such 

that for every integer n, 01nn  
, i.e. 

1nn   is 

the zero homomorphism. 

7
o 

If w(K,) is a weak (4,2)-chain complex, 

then Bn = Imn+1 and  Zn = kern are (4,2)-

subgroups of  Kn, and Bn  is a (4,2)-subgroup of Zn, 

for every integer n. In general, Bn is not a normal 

(4,2)-subgroup of Zn. 

8
o
 A strong (4,2)-chain complex, denoted by 

s(K,), is a weak (4,2)-chain complex with the 

additional requirement that Bn is a normal (4,2)-

subgroup of Zn, for every integer n.  

9
o 

If w(K,) and w(K’,’) are weak (4,2)-

chain complexes, then a (4,2)-chain map f from 

w(K,) to w(K’,’) is a sequence of (4,2)-homo-

morphisms 

f n : ])[,K(])[,K( '
nn  , n – integer 

such that 
'

n f n = f n–1 n , i.e. for every integer n, 

the following diagram commutes 

.])[,K(])[,'K(

ff

])[,K(])[,K(

'
n

'
n

1n

n1n

n
n

1n

















 

10
o
 The weak (4,2)-chain complexes and 

(4,2)-homomorphisms, form a category, denoted by 

(4,2)-wK, whose subcategory is (4,2)-sK of the 

strong (4,2)-chain complexes and (4,2)-homomor-

phisms.  

11
o
 Three functors, denoted by F2, F+ and F*  

from the category (4,2)-wK to the category K of 

chain complexes of Abelian groups are defined as 

follows.  

For a weak (4,2)-chain complex w(K,):   

(1) F2(w(K,)) is the sequence of the groups 2(Kn) 

with the boundary operators 2(n);   

(2) F+(w(K,)) is the sequence of the groups +(Kn) 

with the boundary operators  +(n); and  

(3) F*(w(K,)) is the sequence of the groups *(Kn) 

with the boundary operators  *(n).  

For a (4,2)-chain map f : w(K,)  w(K’,’):  

(1) F2(f)  is the sequence of  the homomorphisms 

2(f n): 2(Kn)
 
 2(Kn’);   

(2) F+(f) is the sequence of  the homomorphisms 

+(f n): +(Kn)
 
 +(Kn’); and  

(3) F*(f) is the sequence of the homomorphisms 

*(f n): *(Kn)
 
 *(Kn’). 

12
o
 For any integer n, let Hn: KAb be the 

functor such that for a chain complex K=(K,), 
Hn(K) is the n-th homology group of K, and for a 
chain map f : K  K’, Hn(f) : Hn(K)  Hn(K’) is 
the induced homormphism.  

13
o
 For any integer n, by composing the 

functors F2, F+ and F* with the functor Hn, three 

functors from (4,2)-wK to the category Ab are 

defined as follows. 

Let K=w(K,), K’=w(K’,’) be two weak 

(4,2)-chain complexes and let f : K  K’ be a chain 

map. Then:  

(1) Hn,2(K) = Hn(F2(K)) and Hn,2(f) = Hn(F2(f)); 

(2) Hn,+(K) = Hn(F+(K)) and Hn,+(f) = Hn(F+(f)); and 

(3) Hn,*(K) = Hn(F*(K)) and Hn,*(f) = Hn(F*(f)). 

Since a strong (4,2)-chain complex K=s(K,) 

is also a weak (4,2)-chain complex, the above 

homology groups Hn2,(K), Hn,+(K) and Hn,*(K) are 

defined. Since for a strong (4,2)-chain complex 

K=s(K,), Bn = Imn+1 is a normal (4,2)-subgoup of 
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Zn = kern, we have the (4,2)-factor group Zn/Bn. 

 14
o
 For any integer n, the functor (4,2)-Hn from 

the category (4,2)-sK to the category (4,2)-Ab is 

defened as follows. For any strong (4,2)-chain 

complexes K=s(K,), (4,2)-Hn(K) is the (4,2)-factor 

group Zn/Bn. It is shown in [5], that for a (4,2)-

chain map f : K  K’, where K and K’ are strong 

(4,2)-chain complexes, the map (4,2)-Hn(f) defined 

by (4,2)-Hn(f)(x
~
) = (f(x))

~
, for xkern is a (4,2)-

homomorphism from (4,2)-Hn(K) to (4,2)-Hn(K’). 

15
o
 By composing the functors 2, + and *  

from the category (4,2)-Ab to the category Ab, with 

the functor (4,2)-Hn,  three functors, 2  (4,2)-Hn, 

+  (4,2)-Hn , and *  (4,2)-Hn , from the category 

(4,2)-sK to the category Ab are obtained.  

Using the fact that (4,2)-sK is a subcategory 

of (4,2)-wK, it is shown in [5], that: 2  (4,2)-Hn 

is the restriction of Hn,2 on (4,2)-sK;  +  (4,2)-Hn 

is the restriction of Hn,+ on (4,2)-sK; and that   

*  (4,2)-Hn is the restriction of Hn,* on (4,2)-sK.  

 

(4,2)-CHAIN HOMOTOPY 
 

Let K=w(K,) and K’=w(K’,’) be two weak 

(4,2)-chain complexes, and let f,g : K  K’ be two  

(4,2)-chain maps.  

Let s be a sequence of (4,2)-homomorphisms: 

sn : (Kn, [ ])    (K’n+1, [ ]). 

The sequence s induces a sequence 2(s) of 

homomorhisms   
 

(2(s))n = 2(sn): ((Kn)
2
,  )    ((K’n+1)

2
,  ). 

 

Definition 1. Let K, K’, f, g and s be as 
above. The sequence s is said to be a (4,2)-chain 

homotopy from f to g, denoted by s: f  g,  if for 
every integer n and any  x,yKn:  

 

(A)                     [’n+1(sn(x)) ’n+1(sn(y)) sn – 1(n(x)) sn – 1(n(y)) gn(x) gn(y)] = (f n(x), f n(y)). 
 

Using the operation   from ((K’n)
2
,  ), the condition (A) can be written in the form 

  

(B)        2(’n+1)(2(sn)(x,y))   2(sn – 1)(2(n)(x,y)) = 2(f n)(x,y)  (2(gn)(x,y))
– 1

 . 

 

For every (4,2)-chain map, if for every 

integer n, we take sn to be the zero (4,2)-homo-

morphism, i.e. sn(x)=0, for every x, then, directly 

from the definition, it follows that s  is a (4,2)-chain 

homotopy from f to f. Hence, the relation  is a 

reflexive relation.  

In general, the relation  is not symmetric, i.e. 

the existence of a (4,2)-chain homotopy from f to g, 

does not imply the existence of a (4,2)-chain homo-

topy from g to f. Also, in general, the relation  is not 

transitive, i.e. the existence of (4,2)-chain homotopies 

from f to g and from g to h, does not imply the 

existence of (4,2)-chain homotopy from f to h. 

Although the relation  is not an equivalence 

relation, it satisfies several properties that will 

allow us to extend it to an equivalence relation, 

analogous to the equivalence relation of chain 

homotopy in the category K of chain complexes of 

commutative groups.  

Next, for (4,2)-chain homotopy s, let: F2(s) be 

the sequence defined by (F2(s))n = 2(sn); F+(s) be the 

sequence defined by (F+(s))n = +(sn) = sn; and F*(s) 

be the sequence defined by (F*(s))n = *(sn). 
 

Proposition 1. Let f ,g: KK’ be (4,2)-chain 

maps and let s  be a (4,2)-chain homotopy from f  

to g, i.e. s: f  g . Then, in the category K, where 

the chain homotopy is an equivalence relation, 

F2(s), F+(s) and F*(s) are chain homotopies, i.e.  

F2(s): F2(f) ~ F2(g); F+(s): f ~ g; and F*(s): f ~ g . 

Proof. The condition (B) implies that F2(s) is 
a chain homotopy from F2(f) to F2(g). Although, in 
general, a (4,2)-chain homotopy from g to f, does 
not exist, the sequence n: (Kn)

2
(K’n+1)

2
 defined 

by (x,y)=(sn(x),sn(y))
– 1

, is a chain homotopy from 
F2(g) to F2(f). For the transitivity, let s’ be a (4,2)-

chain homotopy from g to h. Then the sequence  
n: (Kn)

2
(K’n+1)

2
 defined by  

 (x,y) = (sn(x),sn(y))  (s’n(x),s’n(y)), 

 is a chain homotopy from F2(f) to F2(h).  

Next, we look at F+(s). By setting y=x in (A) 

we obtain [uuvvgn(x)gn(x)] = (fn(x),fn(x)), where  

u = ’n+1(sn(x)) and v = sn–1(n(x)). 

 This implies that u + v + gn(x) = fn(x), i.e.  

’n+1(sn(x)) + sn– 1(n(x)) = fn(x) – gn(x). 

Hence, s is a chain homotopy from f to g, i.e. 

from F+(f) to F+(g).  

The sequence –s, defined by (–s)n(x) = sn(–x) 

= –sn(x), is a chain homotopy from F+(g) to F+(f).  

If s’ is a (4,2)-chain homotopy from g to h,  

the sequence s+s’ defined by (s+s’)n(x)=sn(x)+s’n(x) 

is a chain homotopy from F+(f) to F+(h).  

The discussion for F*(s) is similar to the 

discussion for F+(s). Using the notation for u and v 

as above, by setting y = –x in (A) we obtain 

[uu’vv’gn(x))gn(–x)] = (fn(x),fn(–x)), where 

u’ = ’n+1(sn(–x)) and v’ = sn–1(n(–x)). 

Since sn , n , ’n+1 and gn are (4,2)-homomorphisms, 

it follows that u’ =’n+1(sn(–x)) = –’n+1(sn(x)) = –u,  
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v’ =sn–1(n(–x)) = –sn–1(n(x)) = –v and gn(–x) = –g(x), 

abd so, [u(–u)v(–v)gn(x))gn(–x)] = (fn(x),fn(–x)). 

This implies that u * v * gn(x) = fn(x), i.e. 

’n+1(sn(x)) * sn– 1(n(x)) = fn(x) * (–gn(x)). 

Hence, s is a chain homotopy from f to g, i.e. 

from F*(f) to F*(g).  

The sequence –s, defined by (–s)n(x) = sn(–x) 

= –sn(x), is a chain homotopy from F*(g) to F*(f).  

If s’ is a (4,2)-chain homotopy from g to h,  

the sequence s*s’ defined by (s*s’)n(x)=sn(x)*s’n(x) 

is a chain homotopy from F*(f) to F*(h).   
 

Corollary 1. Let f ,g: KK’ be (4,2)-chain 

 maps. A sequence s, of (4,2)-homomorphisms  

sn : (Kn, [ ])    (K’n+1, [ ]) 

is a (4,2)-chain homotopy from f to g, i.e. s: f  g  

if and only if the sequence F2(s) of homomorphisms 

(F2(s))n = 2(sn) is a chain homotopy from F2(f)  to 

F2(g), i.e. F2(s):  F2(f) ~ F2(g) . 

Proof. The proof, follows from Proposition 1 

and the condition (B).  
 

Proposition 2. Let K=w(K,), K’=w(K’,’)  

and K”=w(K”,”) be weak (4,2)-chain complexes. 

(a) If  f , g : K  K’ and  h : K’  K” are  

(4,2)-chain maps, and  f  g , then hf   hg . 

(b) If  f : K  K’ and  g , h : K’  K” are  

(4,2)-chain maps, and  h  g , then hf   gf . 

Proof. (a) Let s be a (4,2)-chain homotopy 

from f  to g, i.e. s: f  g . Using the fact that hn is a 

(4,2)-homomorphism and applying it to (A), we 

obtain that 

 

[(hn’n+1sn(x))(hn’n+1sn(y))(hnsn – 1n(x))(hn(sn – 1(n(y))(hngn(x))(hngn(y))] = ((hnf n(x)),(hnf n(y))). 
 

Next, using the fact that  h is a (4,2)-chain map, i.e. that hn ’n+1 =  ”n+1 hn+1, we obtain that  
 

[(”n+1(hn+1sn(x)) (”n+1(hn+1sn(y))(hnsn – 1(n(x))(hnsn – 1(n(y)) (hngn(x))(hngn(y))] = ((hnf n(x)),(hnf n(y))).   

 

The last equality is the condition (A) for the 

chain maps hf and hg and for the sequence hs of 

(4,2)-homomorpisms defined by (hs)n = hn+1sn. All 

this implies that hs: hf   hg . 

(b) The proof is similar to the prof of (a). Let  

s be a (4,2)-chain homotopy from g to h. Then the 

sequence sf of (4,2)-homomorpisms defined by 

(fs)n = fnsn is a (4,2)-chain homotopy from gf to hf, 

i.e. fs: gf   hf . 
 

We denote the symmetric and transititive 

closure of the relation  (i.e. the smallest equiva-

lence relation containing ) by ~ . With this, the 

relation ~ is an equivalence relation for the (4,2)-

chain maps in the category (4,2)-wK, and also in 

the category (4,2)-sK.  
 

Remark 1. The definition of ~ implies that 

for two (4,2)-chain maps f and g,  f ~g  if and only 

if there are (4,2)-chain maps h1,h2,h3, …,hm,hm+1 

such that for any j{1,2,3,…,m}, hj  hj+1  or  hj+1  

hj;   f = h1; and g = hm+1.  
 

Definition 2. Two (4,2)-chain maps f and g 

are said to be (4,2)-homotopic if  f ~ g . A (4,2)-

chain map f : K  K’ is said to be a (4,2)- 

homotopy equivalence if  there is a (4,2)-chain 

map g : K’  K such that gf ~1K and fg ~ 1K’ 

where 1K  and 1K’ are the identity (4,2)-chain maps 

for K and K’ respectively. Two weak (4,2)-chain 

complexes K=w(K,), K’=w(K’,’) are said to be 

(4,2)-homotopy equivalent, denoted by K ~ K’, if 

there is a (4,2)-homotopy equivalence f : K  K’ . 

Two strong (4,2)-chain complexes are said to be 

(4,2)-homotopy equivalent, if they are (4,2)-ho-

motopy equivalent as weak (4,2)-chain complexes.  
 

Proposition 3. Let K, K’, K” be (4,2)-chain 

complexes, and let g,h: K K’, g’,h’:K’ K”   be 

(4,2)-chain maps, such that g ~ h and g’ ~ h’. Then, 

the compositions gg’, hh’: K K” are (4,2)-homo-

topic, i.e. gg’~ hh’. 

Proof. Proposition 2 (a) and Remark 1 imply 

that  g’g ~ g’h, and Proposition 2 (b) and Remark 1 

imply that g’h ~ h’h. Thus, gg’~ hh’.  

For a (4,2)-chain map h, we denote the equi-

valence class h
~
 = {g | g ~ h}, by [h]. 

Proposition 3 implies the following: 
 

Corollary 2. All w(K,), the weak (4,2)-

chain complexes as objects and all [h], the (4,2)-ho-

motopy classes of (4,2)-chain maps, form a catego-

ry, denoted by (4,2)-hwK. All strong (4,2)-chain 

complexes and all (4,2)-homotopy classes of (4,2)-

chain maps, form a subcategory of (4,2)-hwK, 

denoted by (4,2)-hsK. 
 

Proposition 4. If h,g are two (4,2)-homo-topic 

(4,2)-chain maps, i.e. h ~ g, then their images by the 

functors F2, F+ and F* in the category of chain 

complexes K are homotopic maps, i.e. F2(h) ~ F2(g), 

F+(h) ~ F+(g) and F*(h) ~ F*(g).  

Proof. The proof follows from Remark 1 and 

Proposition 1.  

Proposition 4 implies the following: 
 

Corollary 3. The functors F2, F+ and F* 

produce three functors, denoted by the same 

notation, from the category (4,2)-hwK to the cate- 
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gory hK, whose objects are the chain complexes 

of commutative groups, and the morphisms are the 

homotopy classes of chain maps. 
 

 Proposition 5. If h,g are two (4,2)-homo-

topic (4,2)-chain maps, then their images by the  

homology functors Hn,2, Hn,+ and Hn,* are equal, i.e. 

Hn,2(h)=Hn,2(g), Hn,+(h)=Hn,+(g) and Hn,*(h)=Hn,*(g).  

Proof. The proof follows from Proposition 4 

together with the fact that homotopic chain maps in 

the category K have the same images by the 

homology functors Hn.  
 

Proposition 6. Let K=w(K,), K’=w(K’,’) 

be two strong (4,2)-chain complexes and let       

h,g: KK’ be (4,2)-homotopic (4,2)-chain maps. 

Then the (4,2)-homomorphisms (4,2)-Hn(h) and 

(4,2)-Hn(g) are equal. 

Proof. Since (4,2)-Hn(K) = kern/Imn+1 and 

(4,2)-Hn(K’)=ker’n/Im’n+1, it is sufficient to show 

that for any xkern, hn(x) ~ gn(x),  where ~ is the 

equivalence relation defined in 4
o
, for G = ker’n  

and H = im’n+1 ,  i.e. it is sufficient to show that: 

hn(x) – gn(x) im’n+1, for any x kern . 

By Remark 1, it is sufficient to consider the 

case when h  g. Let s be a (4,2)-chain homotopy 

from h to g. Then, Proposition 1 implies that F+(h) 

and F+(g) are chain homotopic, i.e. that  

’n+1(sn(x)) + sn– 1(n(x)) = hn(x) – gn(x),  

for every integer n and any xKn. This, together 

with the fact that n(x) = 0 for xkern implies that  

hn(x) – gn(x) = ’n+1(sn(x)) + 0 = ’n+1(sn(x)), 

i.e. that hn(x) – gn(x)  im’n+1 . 

As a consequence of Propositions 5 an 6, we 

obtain the following corollaries. 
 

Corollary 4. (a) If h is a (4,2)-homotopy 

equivalence in (4,2)-wK, then Hn,2(h), Hn,+(h) and 

Hn,*(h) are isomorphisms.  

(b) If h is a (4,2)-homotopy equivalence in 

(4,2)-sK, then (4,2)-Hn(h) is a (4,2)-isomorphism.   
 

Corollary 5. If K and K’ are (4,2)-homotopy 

equivalent (4,2)-chain complexes, then:  

(1) Hn,2(K) and Hn,2(K’) are isomorphic groups; 

(2) Hn,+(K) and Hn,+(K’) are isomorphic groups; and 

(3) Hn,*(K) and Hn,*(K’) are isomorphic groups. 

Moreover, if K and K’ are strong (4,2)-chain 

complexes, then (4,2)-Hn(K) and (4,2)-Hn(K’) are 

isomorphic (4,2)-commutative groups. 
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Разгледуванa е (4,2)-верижна хомотопија за (4,2)-верижни пресликувања помеѓу (4,2)-верижни ком-

плекси (слаби или јаки) и докажано е дека ако f и g се (4,2)-верижно хомотопни (4,2)-верижни пресликувања, 

тие индуцираат исти хомоморфизми на (4,2)-хомолошките групи од соодветните (4,2)-верижни комплекси. 

 

Клучни зборови: комутативни (4,2)-групи; слаб (4,2)-верижен комплекс; јак (4,2)-верижен комплекс; 

(4,2)-верижно пресликување; (4,2)-верижна хомотопија 

 

 

 

 

 

 



 

 

 

 

 

 


