ПРИЛОЗИ, Одделение за природно-математички и биотехнички науки, МАНУ, том **35**, бр. 1, стр. 47–51 (2014) CONTRIBUTIONS, Section of Natural, Mathematical and Biotechnical Sciences, MASA, Vol. **35**, No. 1, pp. 47–51 (2014)

Received: May 5, 2014 Accepted: May 15, 2014 ISSN 1857-9027 UDC: 512.541:515.143.2

Original scientific paper

(4,2)-CHAIN HOMOTOPY

Ajet Ahmeti¹, Dončo Dimovski²

¹University of Prishtina, Prishtina, Kosovo ²Institute of Mathematics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia

*Corresponding author, e-mail: <u>donco@pmf.ukim.mk</u>

We consider (4,2)-chain homotopy for (4,2)-chain maps between (4,2)-chain complexes (weak or strong), and prove that if f and g are (4,2)-chain homotopic, then they induce the same homomorphisms on the (4,2)-homology groups for the correspondent (4,2)-chain complexes.

Key words: commutative (4,2)-group; weak (4,2)-chain complex; strong (4,2)-chain complex; (4,2)-chain map; (4,2)-chain homotopy

INTRODUCTION

The notions of (4,2)-chain complexes and (4,2)-chain homology groups were introduced and examined in [5]. In this paper we consider a notion of a (4,2)-chain homotopy, analogouos to the usual notion of a chain homotopy for chain complexes. Although the introduced notion of a (4,2)-chain homotopy, in general, does not behave in the same way as the usual chain homotopy (for example, the relation among (4,2)-chain maps defined by (4,2)-chain homotopies is not an equivalence), it produces the same results on the (4,2)-homology groups.

For the usual notions about chain complexes of Abelian groups, chain homotopy and homology groups we refer to [4]. We recall the basic notions and properties about (4,2)-groups and (4,2)-chain complexes from [1], [2], [3] and [5].

1^o A (4,2)-semigroup is a pair (G,[]), where G is a nonempty set and []: $G^4 \rightarrow G^2$ is a (4,2)-operation, such that for any x,y,z,t,u,v ∈ G,

[[xyzt]uv] = [x[yztu]v] = [xy[ztuv]],

i.e. [] is (4,2)-associative.

Since the (4,2)-operation is associative, we use the notation [xyztuv] for [[xyzt]uv].

For (4,2)-semigroups (G,[]), (G',[]'), a (4,2)-homomorphism is a map f: $G \rightarrow G'$ such that

[f(x)f(y)f(z)f(t)] = (f(u),f(v)), where (u,v) = [xyzt] for any $x,y,z,t \in G$.

Any (4,2)-semigroup (G,[]) induces a semigroup (G^2 , \circ), where " \circ " is the binary operation on G^2 defined by:

$$(\mathbf{x},\mathbf{y}) \circ (\mathbf{u},\mathbf{v}) = [\mathbf{x}\mathbf{y}\mathbf{u}\mathbf{v}],$$

for any $(x,y),(u,v) \in G^2$.

We say that a (4,2)-semigroup (G,[]) is a commutative (4,2)-group if (G^2,\circ) is a commutative group.

2° Let (G,[]), be a commutative (4,2)-group. Then there is $0 \in G$ and for each $x \in G$, there is a unique element $-x \in G$, such that for any $x,y,z,t \in G$:

(a) [xyzt] = [zyxt] = [xtzy] = [ztxy];

(**b**) if [xyzt] = (u,v), then [yxzt] = (v,u);

(c) [00xy] = (x,y) and [xx(-x)(-x)] = (0,0);

(d) if [xxyy] = (u,v), then u = v;

(e) if [x(-x)y(-y)] = (u,v), then v = -u;

(**f**) the neutral element in (G^2, \circ) is (0,0); and

(g) the inverse element for $(x,y) \in (G^2, \circ)$ is the element $(x,y)^{-1} = [yx(-x)(-x)(-y)(-y)]$.

3° A subset H of G, for a given commutative (4,2)-group (G,[]), is a (4,2)-subgroup, if $u,v \in H$, for any $x,y,z,t \in H$ with [xyzt] = (u,v).

For a (4,2)-subgroup (H,[]) of a commutative (4,2)-group (G,[]), in general, there is no way of defining a (4,2)-factor group, but for normal (4,2)-subgoups (4,2)-factor groups are defined.

 4° A (4,2)-subgroup (H,[]) a of a commutative (4,2)-group (G,[]) is said to be normal, if

 $[x_1x_2H^2] = [y_1y_2H^2] \Leftrightarrow [x_jx_jH^2] = [y_jy_jH^2],$ for any $x_1,x_2,y_1,y_2 \in G$, and j=1,2, where

 $[xyH^{2}] = \{ [xyuv] | u,v \in H \}.$

If (H,[]) is a normal (4,2)-subgroup of a commutative (4,2)-group (G,[]), the (4,2)-factor group (G/H,[]) is defined by: $G/H = \{x^{-} | x \in G\}$, where ~ is the equivalence relation on G defined by

 $x \sim y \Leftrightarrow [xxH^2] = [yyH^2]$ i.e. $x - y \in H$, and $[x \tilde{y} \tilde{z} \tilde{t}] = (u \tilde{y})$ for [xyzt] = (u,v).

 5° The commutative (4,2)-groups and (4,2)-homomorphisms, form the category (4,2)-*Ab*.

Three functors, denoted by Φ_2 , Φ_+ and Φ_* from the category (4,2)-*Ab* to the category *Ab* of commutative groups are defined as follows.

For a commutative (4,2)-group $\underline{G} = (G,[])$: (1) $\Phi_2(\underline{G})$ is the group (G^2, \circ) , defined in 1°;

(2) $\Phi_+(\underline{G}) = (G,+)$, where x+y = u if and only if [xxyy] = (u,u); and

(3) $\Phi_*(\underline{G}) = (G_{*})$, where x * y = u if and only if [x(-x)y(-y)] = (u,-u).

If $f:G \to G'$ is a (4,2)-homomorphism, then, $\Phi_{+}(f) = \Phi_{*}(f) = f$ and $\Phi_{2}(f):G^{2} \to (G')^{2}$ is defined by $\Phi_{2}(f)(x,y) = (f(x),f(y))$.

 6° By analogy with the notion of a chain complex of Abelian groups, two types of (4,2)-chain complexes of commutative (4,2)-groups, introduced in [5], are defined as follows.

A weak (4,2)-chain complex, denoted by $w(K,\partial)$, is a sequence

 $\dots \leftarrow (K_{n-1}, []) \xleftarrow{\partial_n} (K_n, []) \xleftarrow{\partial_{n+1}} (K_{n+1}, []) \leftarrow \dots$ of commutative (4,2)-groups (K_n, []), and (4,2)homomorphisms $\partial_n : (K_n, []) \rightarrow (K_{n-1}, [])$, such that for every integer n, $\partial_n \partial_{n+1} = 0$, i.e. $\partial_n \partial_{n+1}$ is the zero homomorphism.

7° If w(K, ∂) is a weak (4,2)-chain complex, then $B_n = \text{Im}\partial_{n+1}$ and $Z_n = \text{ker}\partial_n$ are (4,2)subgroups of K_n , and B_n is a (4,2)-subgroup of Z_n , for every integer n. In general, B_n is not a normal (4,2)-subgroup of Z_n .

8° A strong (4,2)-chain complex, denoted by $s(K,\partial)$, is a weak (4,2)-chain complex with the additional requirement that B_n is a normal (4,2)-subgroup of Z_n , for every integer n.

9° If $w(K,\partial)$ and $w(K',\partial')$ are weak (4,2)chain complexes, then a (4,2)-chain map f from $w(K,\partial)$ to $w(K',\partial')$ is a sequence of (4,2)-homomorphisms

$$f_n: (K_n, []) \rightarrow (K_n, []), n-integer$$

such that $\partial_n f_n = f_{n-1} \partial_n$, i.e. for every integer n, the following diagram commutes

$$(\mathbf{K}_{n-1},[]) \xleftarrow{\overset{\partial_n}{\longrightarrow}} (\mathbf{K}_n,[])$$
$$\downarrow \mathbf{f}_{n-1} \qquad \qquad \downarrow \mathbf{f}_n$$
$$(\mathbf{K}_{n-1}',[]) \xleftarrow{\overset{\partial'_n}{\longrightarrow}} (\mathbf{K}_n',[]).$$

10° The weak (4,2)-chain complexes and (4,2)-homomorphisms, form a category, denoted by (4,2)-w ∂ K, whose subcategory is (4,2)-s ∂ K of the strong (4,2)-chain complexes and (4,2)-homomorphisms.

11° Three functors, denoted by F_2 , F_+ and F_* from the category (4,2)-w ∂K to the category ∂K of chain complexes of Abelian groups are defined as follows.

For a weak (4,2)-chain complex $w(K,\partial)$:

(1) $F_2(w(K,\partial))$ is the sequence of the groups $\Phi_2(K_n)$ with the boundary operators $\Phi_2(\partial_n)$;

(2) $F_+(w(K,\partial))$ is the sequence of the groups $\Phi_+(K_n)$ with the boundary operators $\Phi_+(\partial_n)$; and

(3) $F_*(w(K,\partial))$ is the sequence of the groups $\Phi_*(K_n)$ with the boundary operators $\Phi_*(\partial_n)$.

For a (4,2)-chain map $f: w(K,\partial) \to w(K',\partial')$: (1) $F_2(f)$ is the sequence of the homomorphisms $\Phi_2(f_n): \Phi_2(K_n) \to \Phi_2(K_n')$;

(2) $F_{+}(f)$ is the sequence of the homomorphisms $\Phi_{+}(f_n): \Phi_{+}(K_n) \rightarrow \Phi_{+}(K_n');$ and

(3) $F_*(f)$ is the sequence of the homomorphisms $\Phi_*(f_n): \Phi_*(K_n) \to \Phi_*(K_n').$

12° For any integer n, let $H_n: \partial K \rightarrow Ab$ be the functor such that for a chain complex $K=(K,\partial)$, $H_n(K)$ is the n-th homology group of K, and for a chain map $f: K \rightarrow K'$, $H_n(f): H_n(K) \rightarrow H_n(K')$ is the induced homormphism.

13° For any integer n, by composing the functors F_2 , F_+ and F_* with the functor H_n , three functors from (4,2)-w ∂K to the category *Ab* are defined as follows.

Let $K=w(K,\partial)$, $K'=w(K',\partial')$ be two weak (4,2)-chain complexes and let $f: K \to K'$ be a chain map. Then:

(1) $H_{n,2}(K) = H_n(F_2(K))$ and $H_{n,2}(f) = H_n(F_2(f))$;

(2) $H_{n,+}(K) = H_n(F_+(K))$ and $H_{n,+}(f) = H_n(F_+(f))$; and

(3) $H_{n,*}(K) = H_n(F_*(K))$ and $H_{n,*}(f) = H_n(F_*(f))$.

Since a strong (4,2)-chain complex $K=s(K,\partial)$ is also a weak (4,2)-chain complex, the above homology groups $H_{n2,}(K)$, $H_{n,+}(K)$ and $H_{n,*}(K)$ are defined. Since for a strong (4,2)-chain complex $K=s(K,\partial)$, $B_n = Im\partial_{n+1}$ is a normal (4,2)-subgoup of $Z_n = \text{ker}\partial_n$, we have the (4,2)-factor group Z_n/B_n .

14° For any integer n, the functor (4,2)-H_n from the category (4,2)-s∂K to the category (4,2)-Ab is defened as follows. For any strong (4,2)-chain complexes K=s(K,∂), (4,2)-H_n(K) is the (4,2)-factor group Z_n/B_n. It is shown in [5], that for a (4,2)chain map f : K → K', where K and K' are strong (4,2)-chain complexes, the map (4,2)-H_n(f) defined by (4,2)-H_n(f)(x[~]) = (f(x))[~], for x ∈ ker∂_n is a (4,2)homomorphism from (4,2)-H_n(K) to (4,2)-H_n(K').

15° By composing the functors Φ_2 , Φ_+ and Φ_* from the category (4,2)-*Ab* to the category *Ab*, with the functor (4,2)-H_n, three functors, $\Phi_2 \circ (4,2)$ -H_n, $\Phi_+ \circ (4,2)$ -H_n, and $\Phi_* \circ (4,2)$ -H_n, from the category (4,2)-s ∂K to the category *Ab* are obtained.

Using the fact that (4,2)-s ∂K is a subcategory of (4,2)-w ∂K , it is shown in [5], that: $\Phi_2 \circ (4,2)$ -H_n

is the restriction of $H_{n,2}$ on (4,2)-s ∂K ; $\Phi_+ \circ (4,2)$ - H_n is the restriction of $H_{n,+}$ on (4,2)-s ∂K ; and that $\Phi_* \circ (4,2)$ - H_n is the restriction of $H_{n,*}$ on (4,2)-s ∂K .

(4,2)-CHAIN HOMOTOPY

Let $K=w(K,\partial)$ and $K'=w(K',\partial')$ be two weak (4,2)-chain complexes, and let f,g : $K \to K'$ be two (4,2)-chain maps.

Let s be a sequence of (4,2)-homomorphisms:

 $s_n: (K_n, []) \rightarrow (K'_{n+1}, []).$

The sequence s induces a sequence $\Phi_2(s)$ of homomorhisms

$$(\Phi_2(s))_n = \Phi_2(s_n): ((K_n)^2, \circ) \rightarrow ((K'_{n+1})^2, \circ).$$

Definition 1. Let K, K', f, g and s be as above. The sequence s is said to be a (4,2)-chain homotopy from f to g, denoted by s: f α g, if for every integer n and any $x,y \in K_n$:

(A)
$$[\partial'_{n+1}(s_n(x)) \ \partial'_{n+1}(s_n(y)) \ s_{n-1}(\partial_n(x)) \ s_{n-1}(\partial_n(y)) \ g_n(x) \ g_n(y)] = (f_n(x), f_n(y)).$$

Using the operation \circ from $((K'_n)^2, \circ)$, the condition (A) can be written in the form

(B)
$$\Phi_2(\partial_{n+1})(\Phi_2(s_n)(x,y)) \circ \Phi_2(s_{n-1})(\Phi_2(\partial_n)(x,y)) = \Phi_2(f_n)(x,y) \circ (\Phi_2(g_n)(x,y))^{-1}$$

For every (4,2)-chain map, if for every integer n, we take s_n to be the zero (4,2)-homomorphism, i.e. $s_n(x)=0$, for every x, then, directly from the definition, it follows that s is a (4,2)-chain homotopy from f to f. Hence, the relation α is a reflexive relation.

In general, the relation α is not symmetric, i.e. the existence of a (4,2)-chain homotopy from f to g, does not imply the existence of a (4,2)-chain homotopy from g to f. Also, in general, the relation α is not transitive, i.e. the existence of (4,2)-chain homotopies from f to g and from g to h, does not imply the existence of (4,2)-chain homotopy from f to h.

Although the relation α is not an equivalence relation, it satisfies several properties that will allow us to extend it to an equivalence relation, analogous to the equivalence relation of chain homotopy in the category ∂K of chain complexes of commutative groups.

Next, for (4,2)-chain homotopy s, let: $F_2(s)$ be the sequence defined by $(F_2(s))_n = \Phi_2(s_n)$; $F_+(s)$ be the sequence defined by $(F_+(s))_n = \Phi_+(s_n) = s_n$; and $F_*(s)$ be the sequence defined by $(F_*(s))_n = \Phi_*(s_n)$.

Proposition 1. Let f ,g: $K \rightarrow K'$ be (4,2)-chain maps and let s be a (4,2)-chain homotopy from f to g, i.e. s: f α g. Then, in the category ∂K , where the chain homotopy is an equivalence relation, $F_2(s)$, $F_+(s)$ and $F_*(s)$ are chain homotopies, i.e. $F_2(s)$: $F_2(f) \sim F_2(g)$; $F_+(s)$: f ~ g; and $F_*(s)$: f ~ g. **Proof.** The condition (**B**) implies that $F_2(s)$ is a chain homotopy from $F_2(f)$ to $F_2(g)$. Although, in general, a (4,2)-chain homotopy from g to f, does not exist, the sequence $\psi_n: (K_n)^2 \rightarrow (K'_{n+1})^2$ defined by $\psi(x,y)=(s_n(x),s_n(y))^{-1}$, is a chain homotopy from $F_2(g)$ to $F_2(f)$. For the transitivity, let s' be a (4,2)chain homotopy from g to h. Then the sequence $\Psi_n: (K_n)^2 \rightarrow (K'_{n+1})^2$ defined by

 $\Psi(\mathbf{x},\mathbf{y}) = (s_n(\mathbf{x}),s_n(\mathbf{y})) \circ (s'_n(\mathbf{x}),s'_n(\mathbf{y})),$ is a chain homotopy from F₂(f) to F₂(h).

Next, we look at $F_+(s)$. By setting y=x in (A) we obtain $[uuvvg_n(x)g_n(x)] = (f_n(x), f_n(x))$, where

 $u = \partial'_{n+1}(s_n(x))$ and $v = s_{n-1}(\partial_n(x))$.

This implies that $u + v + g_n(x) = f_n(x)$, i.e.

 $\partial'_{n+1}(s_n(x)) + s_{n-1}(\partial_n(x)) = f_n(x) - g_n(x).$

Hence, s is a chain homotopy from f to g, i.e. from $F_+(f)$ to $F_+(g)$.

The sequence -s, defined by $(-s)_n(x) = s_n(-x) = -s_n(x)$, is a chain homotopy from $F_+(g)$ to $F_+(f)$.

If s' is a (4,2)-chain homotopy from g to h, the sequence s+s' defined by $(s+s')_n(x)=s_n(x)+s'_n(x)$ is a chain homotopy from $F_+(f)$ to $F_+(h)$.

The discussion for $F_*(s)$ is similar to the discussion for $F_+(s)$. Using the notation for u and v as above, by setting y = -x in (A) we obtain $[uu'vv'g_n(x))g_n(-x)] = (f_n(x),f_n(-x))$, where

 $u' = \partial'_{n+1}(s_n(-x))$ and $v' = s_{n-1}(\partial_n(-x))$.

Since s_n , ∂_n , ∂'_{n+1} and g_n are (4,2)-homomorphisms, it follows that $u' = \partial'_{n+1}(s_n(-x)) = -\partial'_{n+1}(s_n(x)) = -u$,

 $v' = s_{n-1}(\partial_n(-x)) = -s_{n-1}(\partial_n(x)) = -v$ and $g_n(-x) = -g(x)$, abd so, $[u(-u)v(-v)g_n(x))g_n(-x)] = (f_n(x), f_n(-x))$. This implies that $u * v * g_n(x) = f_n(x)$, i.e.

 $\partial_{n+1}^{*}(s_n(x)) * s_{n-1}(\partial_n(x)) = f_n(x) * (-g_n(x)).$

Hence, s is a chain homotopy from f to g, i.e. from $F_*(f)$ to $F_*(g)$.

The sequence -s, defined by $(-s)_n(x) = s_n(-x) = -s_n(x)$, is a chain homotopy from $F_*(g)$ to $F_*(f)$.

If s' is a (4,2)-chain homotopy from g to h, the sequence s*s' defined by $(s*s')_n(x)=s_n(x)*s'_n(x)$ is a chain homotopy from F*(f) to F*(h). \Box

Corollary 1. Let f ,g: $K \rightarrow K'$ be (4,2)-chain maps. A sequence s, of (4,2)-homomorphisms

$$s_n: (K_n, []) \rightarrow (K'_{n+1}, [])$$

is a (4,2)-chain homotopy from f to g, i.e. s: f α g

if and only if the sequence $F_2(s)$ of homomorphisms $(F_2(s))_n = \Phi_2(s_n)$ is a chain homotopy from $F_2(f)$ to $F_2(g)$, i.e. $F_2(s)$: $F_2(f) \sim F_2(g)$.

Proof. The proof, follows from Proposition 1 and the condition **(B)**. \Box

Proposition 2. Let $K=w(K,\partial)$, $K'=w(K',\partial')$ and $K''=w(K'',\partial'')$ be weak (4,2)-chain complexes.

(a) If f, g : $K \to K'$ and h : $K' \to K''$ are (4,2)-chain maps, and f α g, then hf α hg.

(b) If $f: K \to K'$ and $g, h: K' \to K''$ are (4,2)-chain maps, and $h \alpha g$, then $hf \alpha gf$.

Proof. (a) Let s be a (4,2)-chain homotopy from f to g, i.e. s: f α g. Using the fact that h_n is a (4,2)-homomorphism and applying it to (A), we obtain that

 $[(h_n\partial_{n+1}s_n(x))(h_n\partial_{n+1}s_n(y))(h_ns_{n-1}\partial_n(x))(h_n(s_{n-1}(\partial_n(y))(h_ng_n(x))(h_ng_n(y))] = ((h_nf_n(x)),(h_nf_n(y))).$

Next, using the fact that h is a (4,2)-chain map, i.e. that $h_n \partial_{n+1}^{\prime} = \partial_{n+1}^{\prime} h_{n+1}$, we obtain that

$$[(\partial''_{n+1}(h_{n+1}s_n(x)) (\partial''_{n+1}(h_{n+1}s_n(y))(h_ns_{n-1}(\partial_n(x))(h_ns_{n-1}(\partial_n(y)) (h_ng_n(x))(h_ng_n(y))] = ((h_nf_n(x)),(h_nf_n(y))).$$

The last equality is the condition (A) for the chain maps hf and hg and for the sequence hs of (4,2)-homomorpisms defined by $(hs)_n = h_{n+1}s_n$. All this implies that hs: hf α hg.

(b) The proof is similar to the prof of (a). Let s be a (4,2)-chain homotopy from g to h. Then the sequence sf of (4,2)-homomorpisms defined by $(fs)_n = f_n s_n$ is a (4,2)-chain homotopy from gf to hf, i.e. fs: gf α hf. \Box

We denote the symmetric and transititive closure of the relation α (i.e. the smallest equivalence relation containing α) by ~ . With this, the relation ~ is an equivalence relation for the (4,2)-chain maps in the category (4,2)-w ∂ K, and also in the category (4,2)-s ∂ K.

Remark 1. The definition of ~ implies that for two (4,2)-chain maps f and g, f ~g if and only if there are (4,2)-chain maps $h_1,h_2,h_3, \ldots,h_m,h_{m+1}$ such that for any $j \in \{1,2,3,\ldots,m\}$, $h_j \alpha h_{j+1}$ or $h_{j+1} \alpha$ h_j ; $f = h_1$; and $g = h_{m+1}$.

Definition 2. Two (4,2)-chain maps f and g are said to be (4,2)-homotopic if $f \sim g$. A (4,2)chain map f : $K \rightarrow K'$ is said to be a (4,2)homotopy equivalence if there is a (4,2)-chain map g : $K' \rightarrow K$ such that gf ~1_K and fg ~ 1_{K'} where 1_K and 1_{K'} are the identity (4,2)-chain maps for K and K' respectively. Two weak (4,2)-chain complexes K=w(K, ∂), K'=w(K', ∂ ') are said to be (4,2)-homotopy equivalent, denoted by K ~ K', if there is a (4,2)-chain complexes are said to be (4,2)-homotopy equivalent, if they are (4,2)-homotopy equivalent as weak (4,2)-chain complexes.

Proposition 3. Let K, K', K" be (4,2)-chain complexes, and let g,h: $K \rightarrow K'$, g',h': $K' \rightarrow K''$ be (4,2)-chain maps, such that $g \sim h$ and $g' \sim h'$. Then, the compositions gg', hh': $K \rightarrow K''$ are (4,2)-homotopic, i.e. gg'~ hh'.

Proof. Proposition 2 (a) and Remark 1 imply that $g'g \sim g'h$, and Proposition 2 (b) and Remark 1 imply that $g'h \sim h'h$. Thus, $gg' \sim hh'$. \Box

For a (4,2)-chain map h, we denote the equivalence class $h^{\sim} = \{g \mid g \sim h\}$, by [h].

Proposition 3 implies the following:

Corollary 2. All w(K, ∂), the weak (4,2)chain complexes as objects and all [h], the (4,2)-homotopy classes of (4,2)-chain maps, form a category, denoted by (4,2)-hw ∂ K. All strong (4,2)-chain complexes and all (4,2)-homotopy classes of (4,2)chain maps, form a subcategory of (4,2)-hw ∂ K, denoted by (4,2)-hs ∂ K.

Proposition 4. If h,g are two (4,2)-homo-topic (4,2)-chain maps, i.e. $h \sim g$, then their images by the functors F_2 , F_+ and F_* in the category of chain complexes ∂K are homotopic maps, i.e. $F_2(h) \sim F_2(g)$, $F_+(h) \sim F_+(g)$ and $F_*(h) \sim F_*(g)$.

Proof. The proof follows from Remark 1 and Proposition 1. \Box

Proposition 4 implies the following:

Corollary 3. The functors F_2 , F_+ and F_* produce three functors, denoted by the same notation, from the category (4,2)-hw ∂K to the cate-

gory $h\partial K$, whose objects are the chain complexes of commutative groups, and the morphisms are the homotopy classes of chain maps.

Proposition 5. If h,g are two (4,2)-homotopic (4,2)-chain maps, then their images by the homology functors $H_{n,2}$, $H_{n,+}$ and $H_{n,*}$ are equal, i.e. $H_{n,2}(h)=H_{n,2}(g)$, $H_{n,+}(h)=H_{n,+}(g)$ and $H_{n,*}(h)=H_{n,*}(g)$.

Proof. The proof follows from Proposition 4 together with the fact that homotopic chain maps in the category ∂K have the same images by the homology functors H_n . \Box

Proposition 6. Let $K=w(K,\partial)$, $K'=w(K',\partial')$ be two strong (4,2)-chain complexes and let h,g: $K\rightarrow K'$ be (4,2)-homotopic (4,2)-chain maps. Then the (4,2)-homomorphisms (4,2)-H_n(h) and (4,2)-H_n(g) are equal.

Proof. Since (4,2)-H_n(K) = ker $\partial_n/\text{Im}\partial_{n+1}$ and (4,2)-H_n(K')=ker $\partial'_n/\text{Im}\partial'_{n+1}$, it is sufficient to show that for any x \in ker ∂_n , h_n(x) ~ g_n(x), where ~ is the equivalence relation defined in **4**°, for G = ker ∂'_n and H = im ∂'_{n+1} , i.e. it is sufficient to show that:

 $h_n(x) - g_n(x) \in im\partial'_{n+1}$, for any $x \in ker\partial_n$.

By Remark 1, it is sufficient to consider the case when h α g. Let s be a (4,2)-chain homotopy from h to g. Then, Proposition 1 implies that F₊(h) and F₊(g) are chain homotopic, i.e. that

 $\begin{array}{l} \partial'_{n+1}(s_n(x))+s_{n-1}(\partial_n(x))=h_n(x)-g_n(x),\\ \text{for every integer n and any $x\in K_n$. This, together}\\ \text{with the fact that } \partial_n(x)=0 \text{ for $x\in \ker\partial_n$ implies that} \end{array}$

$$\begin{split} h_n(x) - g_n(x) &= \partial'_{n+1}(s_n(x)) + 0 = \partial'_{n+1}(s_n(x)),\\ \text{ i.e. that } h_n(x) - g_n(x) \in \text{ im}\partial'_{n+1} \,. \Box \end{split}$$

As a consequence of Propositions 5 an 6, we obtain the following corollaries.

Corollary 4. (a) If h is a (4,2)-homotopy equivalence in (4,2)-w ∂K , then $H_{n,2}(h)$, $H_{n,+}(h)$ and $H_{n,*}(h)$ are isomorphisms.

(b) If h is a (4,2)-homotopy equivalence in (4,2)-s ∂K , then (4,2)-H_n(h) is a (4,2)-isomorphism.

Corollary 5. If K and K' are (4,2)-homotopy equivalent (4,2)-chain complexes, then:

(1) $H_{n,2}(K)$ and $H_{n,2}(K')$ are isomorphic groups;

(2) $H_{n,+}(K)$ and $H_{n,+}(K')$ are isomorphic groups; and (3) $H_{n,*}(K)$ and $H_{n,*}(K')$ are isomorphic groups.

Moreover, if K and K' are strong (4,2)-chain complexes, then (4,2)- $H_n(K)$ and (4,2)- $H_n(K')$ are isomorphic (4,2)-commutative groups.

REFERENCES

- G. Čupona, D. Dimovski, On a class of vector valued groups; *Proc. Conf. Alg. and Logic*, Zagreb, (1984), pp.29–37.
- [2] D. Dimovski, S. Ilić, Commutative (2m,m)-groups. Vector Valued Semigroups and Groups, MANU, Skopje, 1988, 79–90.
- [3] D. Dimovski, S. Ilić, Free commutative (2m,m)groups, *Matemat. bilten*, Skopje, 1989, pp. 25–34.
- [4] A. Dold, *Algebraic Topology*, Springer-Verlag, Berlin-Heidelberg-New York, (1972).
- [5] D. Dimovski, A. Ahmeti, (4,2)-Homology groups, *Contributions, Sect. Math. Tech. Sci.*, MANU, XXI, 1/2 (2000), pp.33–46

(4,2)-ВЕРИЖНА ХОМОТОПИЈА

Ајет Ахмети¹, Дончо Димовски²

¹Универзитет Приштина, Приштина, Косово ²Институт за математика, Природно-математички факултет, Универзитет "Св. Кирил и Методиј", Скопје, Република Македонија

Разгледувана е (4,2)-верижна хомотопија за (4,2)-верижни пресликувања помеѓу (4,2)-верижни комплекси (слаби или јаки) и докажано е дека ако f и g се (4,2)-верижно хомотопни (4,2)-верижни пресликувања, тие индуцираат исти хомоморфизми на (4,2)-хомолошките групи од соодветните (4,2)-верижни комплекси.

Клучни зборови: комутативни (4,2)-групи; слаб (4,2)-верижен комплекс; јак (4,2)-верижен комплекс; (4,2)-верижно пресликување; (4,2)-верижна хомотопија