ПРИЛОЗИ, Одделение за природно-математички и биотехнички науки, МАНУ, том **41** бр. 2, стр. 109–114 (2020) CONTRIBUTIONS, Section of Natural, Mathematical and Biotechnical Sciences, MASA, Vol. **41**, No. 2, pp. 109–114 (2020)

Received: October 25, 2020 Accepted: December 2, 2020 ISSN 1857–9027 e-ISSN 1857–9949 UDC: 512.548 DOI:10.20903/csnmbs.masa.2020.41.2.160

Original scientific paper

ON FREE GROUPOIDS WITH $(xy)^n = x^n y^n$

Dončo Dimovski, Gjorgji Čupona

Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia e-mail: ddimovskid@gmail.com

We investigate free objects in the variety of groupoids which satisfy the identity $(xy)^n = x^n y^n$. Under certain condition for the groupoid power x^n , i.e. for simple groupoid powers, a canonical description for free groupoids in such varieties is given and they are characterized by the injective groupoids in these varieties.

Key words: variety of groupoids, free groupoid, groupoid powers

INTRODUCTION

In the papers [3,5,6,8,9], Čupona and coauthors investigated free objects in varieties of groupoids satisfying some identities among groupoid powers. Free objects in the variety of groupoids satisfying the law $(xy)^2 = x^2y^2$ are investigated in [4]. Almost 20 years ago, together with Professor Čupona, we obtained a canonical description of free objects in the variety of groupoids satisfying the identity $(xy)^n = x^n y^n$ for some groupoid powers x^n . This result was not published, and the question of finding a canonical description of free objects for an arbitrary groupoid power x^n is still open. In this paper we present a slight improvement of the above mentioned, canonical description.

First, we state some necessary preliminaries.

Let $G = (G, \cdot)$ be a groupoid, i.e. an algebra with a binary operation $(x, y) \rightarrow xy$ on G. If a = bcfor $a, b, c \in G$, we say that b, c are divisors of a in G. A sequence $a_1, a_2, ...$ of elements of G is said to be a divisor chain in G if a_{i+1} is a divisor of a_i . We say that $a \in G$ is a prime in G if the set of divisors of a in G is empty. A groupoid $G = (G, \cdot)$ is said to be injective if xy = uv implies (x, y) = (u, v), for any $x, y, u, v \in G$. By a "free groupoid" we mean "free groupoid in the variety of groupoids" (i.e. an "absolutely free groupoid").

The following characterization of free groupoids is well known (see for example [1], I.1.)

Theorem. 1.1 A groupoid $\mathbf{F} = (F, \cdot)$ is free if and only if (iff) it satisfies the following conditions.

(1) Every divisor chain in \mathbf{F} is finite.

(2) F is injective.

Then the set *B* of primes in F is nonempty and it is the unique basis of F.

Throughout the paper, a free groupoid with basis *B* will be denoted by **F** or **F**(*B*). For any $v \in F$, we define the *length* |v| and the *set* P(v) *of parts of* v by:

|b| = 1, |tu| = |t| + |u| $P(b) = \{b\}, P(tu) = \{tu\} \cup P(t) \cup P(u)$ for every $b \in B, t, u \in F$.

GROUPOID POWERS

We recall some definitions, notions and statements from [7].

Let $E = (E, \cdot)$ be a free groupoid with one-element basis $\{e\}$. The elements of *E* will be denoted by *f*, *g*, *h*, ... and called *groupoid powers*.

If $G = (G, \cdot)$ is a groupoid, then each $f \in E$ induces a transformation f^{G} of G (called the *interpretation* of f in G) defined by:

$$f^{G}(x) = \varphi_{x}(f)$$

where $\varphi_x: E \to G$ is the unique homomorphism from *E* to *G* such that $\varphi_x(e) = x$. In other words

$$e^{G}(x) = x$$
, $(fh)^{G}(x) = f^{G}(x)h^{G}(x)$,

for any $f, h \in E, x \in G$. (For a fixed groupoid **G** we usually write f(x) instead of $f^{G}(x)$.)

Each $f \in E$ induces a transformation f^E of E. We define a new operation " \circ " on E by: $f \circ g = f^E(g) = f(g).$ So, we obtain an algebra (E, \circ, \cdot) with two operations, such that for any $f, g, h \in E$:

$$e \circ f = f \circ e = f$$

 $(fg) \circ h = (f \circ h)(g \circ h).$

A power $f \in E$ is said to be *irreducible* if $f \neq e$ and $f = g \circ h$ implies g = e or h = e.

The following facts for any $f, g, p, q \in E$, $t, u \in F$ can be shown by induction on lengths.

2.1
$$|f(t)| = |f||t|$$
.
2.2 $t \in P(f(t))$.
2.3 $(f(t) = g(u) \text{ and } |t| = |u|) \text{ iff}$
 $(f = g \text{ and } t = u)$.
2.4 $(f(t) = g(u) \text{ and } |t| \ge |u|) \text{ iff}$
 $(\exists! h \in E)(t = h(u) \text{ and } g = h(f))$
2.5 (E, \circ, e) is a cancellative monoid.

2.6 If the length of a power f is a prime integer, then the power f is irreducible.

2.7 If $f \circ p = g \circ q$ and p, q are irreducible, then f = g and p = q.

2.8 For $f \neq e$ there is a unique sequence of irreducible powers $p_1, p_2, ..., p_k$ such that

 $f = p_1 \circ p_2 \circ \dots \circ p_k \,.$

2.9 The monoid (E, \circ, e) is a free monoid, with a basis the countable set of irreducible powers.

For a fixed groupoid power $f \in E$ of length nwe will write x^n instead of f(x). For n = 2 there is only one power, $x^2 = x \cdot x$, but for $n \ge 3$ there are different *n*-th powers. For example, $x^3 = x^2 \cdot x$ and $x^3 = x \cdot x^2$ are different powers, and they are the only powers of length three. There are five different powers of length four: $x^4 = x^3 \cdot x$, $x^4 = x^2 \cdot x^2$, $x^4 = x \cdot x^3$, $x^4 = (x \cdot x^2) \cdot x$ and $x^4 = x \cdot (x \cdot x^2)$. It is well known that there are $\frac{(2n-2)!}{n!(n-1)!}$ groupoid powers of length *n*, i.e. *n*-th powers (see, for example [2] page 125, or [7] (1.8)).

A CLASS OF GROUPOIDS DETERMINED BY GROUPOID POWERS

Let $f \in E$ be a groupoid power of length *n* and let *B* be a nonempty set. We will present a specific construction of a groupoid, denoted by R(f, B), determined by *f* and *B*.

If $G = (G, \cdot)$ is a given groupoid, for any nonnegative integer k we define a transformation $(k): x \to x^{(k)}$ of G as the k-th power of f in the monoid (E, \circ, e) , i.e.

$$x^{(0)} = x, \ x^{(k+1)} = f(x^{(k)}).$$

Using the notion x^n instead of f, we have: $x^{(0)} = x, \ x^{(k+1)} = (x^{(k)})^n.$ Since a free groupoid F is injective, it follows that the transformation (k) is injective on F, for any $k \ge 0$. Thus, for each $k \ge 0$, there exists an injective partial transformation $(-k): x \to x^{(-k)}$ on F defined by:

$$y^{(-k)} = x$$
 iff $x^{(k)} = y$.

For any $u \in F$, there exists a largest integer m, such that $u^{(-m)} \in F$. We denote this integer by [u] and call it the *exponent* of u in F.

It is easy to show that the following facts are true for all $u, v \in F$ and all integers t and s.

3.1
$$u^{(t)} \in F$$
 iff $t + [u] \ge 0$.

3.2 If $t + [u] \ge 0$, then $|u^{(t)}| = n^t |u|$.

3.3 If $t + [u] \ge 0$ and $t + s + [u] \ge 0$, then $(u^{(t)})^{(s)} = u^{(t+s)}$.

3.4 If $t + [u] \ge 0$ and $s - t + [v] \ge 0$, then $(u^{(t)} = v^{(s)} \text{ iff } u = v^{(s-t)}).$

Definition 3.1 We define R(f, B), as the least subset of *F* such that $B \subseteq R(f, B)$ and:

 $vw \in R(f, B)$ iff

$$[(vw = f(u) \text{ for some } u \in R(f, B)) \text{ or }$$

 $(v, w \in R(f, B) \text{ and } min\{[v], [w]\} = 0)].$

We will often write R instead of R(f, B).

Let
$$S = R \setminus \{u^{(1)} = f(u) | u \in R\}.$$

Proposition 3.5 For every $h \in E$ and $x \in F$, $h(x) \in S$ implies $x \in R$.

Proof. The proof is by induction on the length |h| of h. For |h| = 1, $h(x) = x \in S$ implies $x \in R$.

Assume that for any $g \in E$ with |g| < k, $g(x) \in S$ implies $x \in R$. Let $h = h_1h_2$ and |h| = k. Then $h(x) = h_1(x)h_2(x) \in S \subseteq R$ implies that $h_1(x), h_2(x) \in R$ and $min \{[h_1(x)], [h_2(x)]\} = 0$, i.e. $[h_i(x)] = 0$ for some $i \in \{1,2\}$. This implies that $h_i(x) \in S$, and the inductive hypothesis, since $|h_i| < k$, implies that $x \in R$.

Proposition 3.6 For every $u \in F$,

$$u^{(1)} = f(u) \in R \text{ iff } u \in R.$$

Proof. The definition of *R* implies that, if $u \in R$, then $u^{(1)} = f(u) \in R$.

Let $u^{(1)} \in R$. If $u^{(1)} = v^{(1)}$ for some $v \in R$, then, since the transformation (1) is injective, it follows that $u = v \in R$. If $u^{(1)} \neq v^{(1)}$ for every $v \in R$, i.e. $u^{(1)} \in S$, then Proposition 3.5 implies that $u \in R$.

Proposition 3.7 If for an integer t and $u \in F$, $t + [u] \ge 0$, then $(u^{(t)} \in R \text{ iff } u \in R)$.

Proof. The proof is by induction on t, starting from -[u], using the fact 3.3 and Proposition 3.6.

Proposition 3.8 For every $u, v \in R(f, B)$,

$$(u^{(-m)}v^{(-m)})^{(m)} \in R(f,B),$$

where $m = min\{[u], [v]\}.$

Proof. The fact that $m = min\{[u], [v]\}$ implies that $-m + [u] \ge 0$ and $-m + [v] \ge 0$, and so, Proposition 3.7 implies that $u^{(-m)}, v^{(-m)} \in R$. Since m = [u] or m = [v], we have $[u^{(-m)}] = 0$ or $[v^{(-m)}] = 0$, and the definition of *R* implies that

$$\left(u^{(-m)}v^{(-m)}\right)^{(m)} \in R(f,B). \blacksquare$$

If for $u, v \in R(f, B)$ we define u * v by:

$$u * v = (u^{(-m)}v^{(-m)})^{(m)},$$

where $m = min\{[u], [v]\}$, then $\mathbf{R} = (R(f, B), *)$ is a groupoid.

Proposition 3.9 *For every*
$$u, v \in R(f, B)$$
,
 $u^{(1)} * v^{(1)} = (u * v)^{(1)}$.
Proof. If $m = min\{[u], [v]\}$, then

$$\min\{[u^{(1)}], [v^{(1)}]\} = m + 1.$$

The definition of * and the fact 3.3 imply:

$$u^{(1)} * v^{(1)} = \left(\left(u^{(1)} \right)^{\left(-(m+1) \right)} \left(v^{(1)} \right)^{\left(-(m+1) \right)} \right)^{(m+1)}$$

= $\left(\left(u^{(-m)} \left(v \right)^{\left(-m \right)} \right)^{(m+1)}$
= $\left(\left(\left(u \right)^{\left(-m \right)} \left(v \right)^{\left(-m \right)} \right)^{(m)} \right)^{(1)}$
= $\left(u * v \right)^{(1)}$.

Let \mathcal{M} be a variety of groupoids. If $\mathbf{G} \in \mathcal{M}$, we say that \mathbf{G} is an \mathcal{M} -groupoid, and if it is free in \mathcal{M} , we say that it is \mathcal{M} -free.

For a groupoid power $f \in E$, i.e. x^n , we denote by \mathcal{M}_f the variety of all the groupoids satisfying the identity

$$f(xy) = f(x)f(y), \text{ i.e.}$$
$$(xy)^n = x^n y^n.$$

For the groupoid power $e^2 = ee$, i.e. for the groupoid power x^2 , we denote \mathcal{M}_{e^2} by \mathcal{M}_2 .

We state the following theorems, proven in [4] in their original forms.

Theorem 1. $\mathbf{R} = (R(e^2, B), *)$ is \mathcal{M}_2 -free and the set *B* is the unique basis for \mathbf{R} .

Theorem 2. An \mathcal{M}_2 -groupoid $\mathbf{H} = (H, \cdot)$ is \mathcal{M}_2 -free iff the following conditions hold.

(i) Every divisor chain in **H** is finite.

(ii) If $x^2 = y^2$, then x = y.

(iii) If xy = uv, $x \neq y$ and $u \neq v$, then x = uand y = v.

(iv) If $x^2 = yz$ and $y \neq z$, then there are u, v such that x = uv, $y = u^2$ and $z = v^2$.

Then the set P of primes in H is nonempty and the unique basis for H.

Theorem 3. If H is an \mathcal{M}_2 -free groupoid, then there exist subgroupoids G, Q of H, such that G is not \mathcal{M}_2 -free, and Q is \mathcal{M}_2 -free with an infinite rank.

In [4], for any positive integer *n*, the groupoid power e^n , i.e. x^n , is defined as follows:

$$e^1 = e, \ e^{k+1} = e^k e$$
, i.e.
 $x^1 = e, \ x^{k+1} = x^k x$.

For the groupoid power e^n , we denote \mathcal{M}_{e^n} by \mathcal{M}_n .

The generalizations of Theorems 1 - 3, are also discussed in [4]. **Theorem 1'** and **Theorem 3'** are the same as Theorem 1 and Theorem 3, where 2 is replaced by *n*. **Theorem 2'** is obtained from Theorem 2 by replacing 2 by *n* and by replacing (ii), (iii) and (iv) by:

(ii') If $x^n = y^n$, then x = y.

(iii') If xy = uv, $x \neq y^{n-1}$ and $u \neq v^{n-1}$, then x = u and y = v.

(iv') If $x^n = yz$ and $y \neq z^{n-1}$, then there are u, v such that $x = uv, y = u^n$ and $z = v^n$.

We note that Theorems 2 and 2' characterize \mathcal{M}_2 -free and \mathcal{M}_n -free groupoids in the same way as Theorem 1.1 characterizes free groupoids.

It is easy to check that if $uv \in R(e^2, B)$, then $u, v \in R(e^2, B)$, but this is not the case for $R(e^n, B)$ when $n \ge 3$. For example, if $b \in B$ and n = 3, then $u(2) \in (l(1))^{(1)} = (l(1))^2 = l(1) \in R(-3, B)$

 $b^{(2)} \in (b^{(1)})^{(1)} = (b^{(1)})^2 \cdot b^{(1)} \in R(e^3, B),$ but $(b^{(1)})^2 \notin R(e^3, B).$

From now on, for a groupoid power $g \in E$, of length *p*, we will often write: $g^F(x) = x^p$ for $x \in F$, and $g^R(x) = x_*^p$ for $x \in R(f, B)$.

The following examples will show that in general, for a groupoid power $f \in E$, $\mathbf{R} = (R(f, B), *)$ does not have to belong to \mathcal{M}_f , and there are $u \in R$ such that $[u_*^n] = 0$, where $f(x) = x^n$.

Example 3.1. Let $f = e^2 \circ ((e^2)^2 e) \in E$ and let $B = \{a\}$. The length of *f* is 10, and we write $f(x) = x^{10} = ((x^2)^2 x)^2 = (x^5)^2 = x^{(1)}$.

Let $u = a^5 = (a^2)^2 a$. Since $a \in B \subseteq R$, and [a] = 0, we have that $a^2 \in R$ and $[a^2] = 0$. This implies that $(a^2)^2 \in R$ and $[(a^2)^2] = 0$. Next, we obtain that $(a^2)^2 a \in R$ and $[(a^2)^2 a] = 0$. All this implies that $u \in R$ and [u] = 0.

Now, we calculate $u_*^{10} = ((u_*^2)_*^2 * u)_*^2$, as follows:

 $u_*^2 = u^2 = (a^5)^2 = a^{10} = a^{(1)};$ $(u_*^2)_*^2 = a^{(1)} * a^{(1)} = (a * a)^{(1)} = (a^2)^{(1)};$ $(u_*^2)_*^2 * u = (a^2)^{(1)} * a^5 = (a^2)^{(1)} a^5; \text{ and}$ $u_*^{10} = (a^2)^{(1)} a^5 * (a^2)^{(1)} a^5 = ((a^2)^{(1)} a^5)^2.$ $x^{18} = ((x^3)^2)^3 = x^{(1)}$. Let $u = ((a^3)^3)^2$. Since $a \in B \subseteq R$, and [a] = 0, we have that $a^2 \in R$ and $[a^2] = 0$. This implies that $a^3 = a^2a \in R$ and $[a^3] = 0$. Next, $(a^3)^2 \in R$ and $[(a^3)^2] = 0$. This, together with $a^3 \in R$, implies that $((a)^3)^3 \in R$ and $[(a^3)^3] = 0$, and so, $u \in R$ and [u] = 0.

 $(u * v)^{10}_* = (u^2_*)^{10}_* = (a^{(1)})^{10}_* = a^{(2)}$; and

Example 3.2. Let $f = e^3 \circ e^2 \circ e^3 \in E$ and let B =

 $\{a, b\}$. The length of f is 18, and we write f(x) =

 $u_*^{10} * v_*^{10} = (((a^2)^{(1)}a^5)^2)^2$.

Thus, $u_*^{10} * v_*^{10} \neq (u * v)_*^{10}$

Now, we calculate $u_*^{18} = ((u_*^3)_*^2)_*^3$ as follows: $u_*^2 = u * u = u^2$ and $[u^2] = 0$; $u_*^3 = u_*^2 * u = u^2 * u = u^3$ $= (((a^3)^3)^2)^3 = (a^3)^{(1)}$; $(u_*^3)_*^2 = (a^3)^{(1)} * (a^3)^{(1)} = ((a^3)^2)^{(1)}$; $((u_*^3)_*^2)_*^2 = ((a^3)^2)^{(1)} * ((a^3)^2)^{(1)}$ $= (((a^3)^2)^2)^{(1)}$; $((u_*^3)_*^2)_*^3 = (((a^3)^2)^{(1)} * ((a^3)^2)^{(1)}$ $= (((a^3)^2)^3)^{(1)} = (a^{(1)})^{(1)} = a^{(2)}$.

We see that $[u_*^{18}] = 2$, while [u] = 0.

In the same way, for $v = ((b^3)^3)^2$, we obtain that $v_*^{18} = b^{(2)}$.

The previous calculations imply that

 $u_*^{18} * v_*^{18} = a^{(2)} * b^{(2)} = (ab)^{(2)}.$ In the calculation of $(u * v)_*^{18}$, we have: u * v = uv; $(u * v)_*^3 = (uv)_*^3 = (uv)^3;$ $((u * v)_*^3)_*^2 = ((uv)^3)_*^2 = ((uv)^3)^2;$ and $(u * v)_*^{18} = (((uv)^3)^2)_*^3 = (((uv)^3)^2)^3$ $= (uv)^{(1)}.$ Since $(ab)^{(2)} \neq (uv)^{(1)}$, it follows that $u_*^{18} * v_*^{18} \neq (u * v)_*^{18}.$

We see that the groupoid powers in the previous examples are not irreducible, and moreover, the groupoid power $x^n = (x^p)^q$ has $(x^q)^2$ as its part, i.e. $(x^q)^2 \in P(x^n)$. That is why we consider a special class of groupoid powers, called simple.

We say that a groupoid power x^n is *complex*, if $x^n = ((x^p)^r)^q$ for some $p, q \ge 2$ and $r \ge 1$, and $P(x^n)$ contains $(x)^q (x^r)^q$ or $(x^r)^q (x)^q$. We say that a power x^n is *simple*, if it is not complex.

Irreducible groupoid powers are simple. Since any power x^n , for a prime *n*, is irreducible, it follows that it is simple.

\mathcal{M}_f -FREE GROUPOIDS

Let $f = gh \in E \setminus \{e\}$. For a given groupoid $G = (G, \cdot)$ let $T(f, G) \subseteq G \times G$ be defined as:

 $T(f,G) = \{(g(u),h(u))|u \in G\}.$ With the notation $f(x) = x^n = x^p x^q$, $T(f,G) = \{(u^p,u^q)|u \in G\}.$

Theorem 4.1 Let f = gh, $g, h \in E \setminus \{e\}$ and with the notation $f(x) = x^n = x^p x^q$, let a groupoid $H = (H, \cdot)$ satisfies the following conditions.

(i) Every divisor chain in **H** is finite.

(ii) If $x^n = y^n$ in **H**, then x = y.

(iii) If xy = uv in H, and $xy \neq z^n$ for each $z \in G$, then x = u and y = v.

(iv) If $x^n = yz$ in H and $(y, z) \notin T(f, H)$, then there are $u, v \in H$, so that $x = uv, y = u^n$ and $z = v^n$.

Then, the groupoid H is \mathcal{M}_f -free and the set B of primes in H is nonempty and is the unique basis of H.

Proof. The proof is almost the same as the proof of Proposition 2.3 from [4], which is in fact Theorem 4.1 for $f = e^2$, i.e. for the power x^2 . The only difference is the following.

The conditions (ii), (iii) and (iv), imply that, for the power x^2 , any element $u \in H$ has at most three divisors (shown in [4]), while for any other power, any element $u \in H$ has at most four divisors. The proof of this for a power different than x^2 is as follows. Let $u \in H$.

If u is prime, then it has 0 divisors. If u is not prime, we consider two cases.

Case 1. For any $x \in H$, $u \neq x^n$. Then, the condition (iii) implies that u has at most two divisors.

Case 2. For some $x \in H$, $u = x^n = x^p x^q$. The condition (ii) implies that the element x is unique. If x is prime and u = yz, then $(y, z) \notin T(f, H)$ would imply that there are $v, w \in H$, so that x = vw, that is not possible. Hence, for x prime, u has at most two divisors. If x is not prime, i.e. if x = vw, then $u = x^n = x^p x^q = v^n w^n$, and conditions (ii) and (iv) imply that u has at most four divisors.

Theorem 4.2 If $f(x) = x^n$, and $u_*^n = u^n$ for every $u \in (R(f, B), *)$, then (R(f, B), *) satisfies the conditions (i) to (iv), from Theorem 4.2, and so it is \mathcal{M}_f -free with basis B.

Proof. Let
$$x^n = x^p x^q$$
.

If x * y = z, then |z| > |x|, |z| > |y|, and this implies that **R** satisfies (i).

If $x_*^n = y_*^n$, then $x^n = y^n$ in F, and so x = y. Hence, R satisfies (ii).

We see that $[u_*^{10}] = 0$.

Next, let v = u. Then:

If x * y = u * v and $x * y \neq z_*^n$ for any $z \in R$, then $\min\{[x], [y]\} = 0 = \min\{[u], [v]\}$. This implies that x * y = xy, u * v = uv, and xy = uv in F. So, x = u and y = v. Hence, R satisfies the condition (iii).

Let
$$x_{*}^{n} = y * z$$
 and $(y, z) \notin T(f, R)$.
If $\min\{[y], [z]\} = 0$, then
 $x^{p}x^{q} = x^{n} = x_{*}^{n} = y * z = yz$

and so, $(y, z) \in T(f, R)$. Hence, $\min\{[y], [z]\} > 0$, and this implies that there are $u, v \in R$, such that $y = u^n = u_*^n$, $z = v^n = v_*^n$, and $x^n = (u * v)^n$, i.e. x = u * v. Hence, **R** satisfies (iv).

Theorem 4.3 Let $f \in E$ be a simple groupoid power, with $f(x) = x^n$. Then, for every $u \in (R(f,B),*)$, $u_*^n = u^n$.

Proof. By Proposition 3.9 it is enough to consider $x \in R$ with [x] = 0. We will show that $x_*^t = x^t$, for any part x^t of x^n .

(1) Since [x] = 0, it follows that $x_*^t = x * x = x^2$. (2) Let $x_*^t = x^t$, for any part x^t of x^n with t < k.

(2.1) Let $x^k = x^q x^s$ be a part of x^n with q < s.

Then, $x_*^k = x_*^q * x_*^s = x^q * x^s$.

We will show that min $\{[x^q], [x^s]\} = 0$, which implies that $x_*^k = x^k$. Assume contrary, that, $x^q = u^n$ and $x^s = v^n$ for some $u, v \in R$. Since [x] = 0 and $k \le n$, it follows that $2 \le q, s < n$. This, implies that, $x = u^m$ and $x = v^p$ for some $m, p \ge 2$, and $u^n = (u^m)^q, v^n = (v^p)^s$, and we obtain that

$$z^n = (z^m)^q = (z^p)^s \, .$$

Since q < s, it follows that $z^n = (z^m)^q = (z^p)^s$, $z^m = (z^p)^r$ and $z^s = (z^r)^q$. With all this, we have: $x^n = ((x^p)^r)^q$ and $x^q x^s = x^q (x^r)^q$ is a part of x^n , i.e. the power x^n is not simple. This is a contradiction.

(2.2) The proof that $x_*^k = x^k$, for $x^k = x^s x^q$ with q < s is the same as the proof in (2.1).

(2.3) Let $x^k = x^q x^s$ be a part of x^n with q = s, but possibly different powers x^q, x^s , and let $x^q = u^n$ and $x^s = v^n$ for some $u, v \in R$. Similarly as in (2.2), we obtain that, $x = u^m = v^p$, for some $m, p \ge 2$, and $u^n = (u^m)^q$, $v^n = (v^p)^s$. Now, q = s and sp = n = qm, imply that p = m. This, together with $u^m = v^p$ in F implies that u = v and z^m, z^p are the same powers. Next, $(u^m)^q = (v^p)^s$ in F implies that z^q, z^s are the same powers. All this implies that, $x^n = ((x^p)^1)^q$ and $x^q x^q = x^q (x^1)^q$ is a part of x^n , i.e. x^n is not simple. Hence, $[x^q] = 0$ or $[x^s] = 0$, and $x^k_* = x^k$.

The following generalization of Theorem 1 from [4], follows from Theorems 4.2 and 4.3.

Theorem 4.4 If $f \in E$ is a simple groupoid power, then (R(f, B), *) is \mathcal{M}_f -free with basis B, and satisfies the conditions (i), (ii), (iii) and (iv) from Theorem 4.1.

The next theorem characterizes \mathcal{M}_{f} -free groupoids, for a simple power f, and it is a generalization of Theorem 2 from [4] and Theorem 1.1. Its proof follows from Theorems 4.1, 4.2 and 4.3.

Theorem 4.5 Let $f \in E$ be a simple groupoid power. A groupoid $\mathbf{H} = (H, \cdot)$ is \mathcal{M}_f -free if and only if it satisfies the conditions (i), (ii), (iii) and (iv) from Theorem 4.1. Then, the set B of primes in H is nonempty and is the unique basis of \mathbf{H} .

REFERENCES

- [1] R.H.Bruck, *A survey of binary systems*, Berlin: Springer-Verlag, 1958.
- [2] P. M. Cohn, *Universal algebra*, New York, Harper&Row, 1965.
- [3] Gj. Čupona, N. Celakoski, Free groupoids with xⁿ = x, *Proc. First Congress of Math. and Inf. of Macedonia, 1996*, SMIM, (1998), pp. 19–25.
- [4] Gj. Čupona, N. Celakoski, Free groupoids with $(xy)^2 = x^2y^2$, *Contributions, Sec. Math. Tech. Sci.*, MANU, **XVII**, 1-2, (1996), pp. 5–17.
- [5] Gj. Čupona, N. Celakoski, Free groupoids with $xy^2 = xy$, *Math. Bulletin*, **21** (**47**) (1997), pp. 5–16.
- [6] Gj. Čupona, N. Celakoski, On groupoids with the identity x²y² = xy, *Contributions, Sec. Math. Tech. Sci.*, MANU, XVIII, 1-2 (1997), pp. 5–15.
- [7] Gj. Čupona, N. Celakoski, S. Ilić, Groupoid powers, *Math. Bulletin*, **25** (**51**) (2001), pp. 5–12.
- [8] Gj. Čupona, N. Celakoski, B. Janeva, Free groupoids with axioms of the form x^{m+1}y = xy and/or xy^{m+1} = xy, *Novi Sad J. Math.*, **29** 2 (1999), pp. 131–147.
- [9] Gj. Čupona, S. Ilić, Free groupoids with xⁿ = x, II, *Novi Sad J. Math.*, **29** 1 (1999), pp. 147–154.

ЗА СЛОБОДНИ ГРУПОИДИ СО $(xy)^n = x^n y^n$

Дончо Димовски, Горѓи Чупона

Македонска академија на науките и уметностите, Скопје, Република Македонија

Во трудовите [3,5,6,8,9], Чупона со соработниците ги истражува слободните објекти во многуобразија групоиди кои задоволуваат некои идентитети меѓу групоидни степени. Слободни објекти во многуобразието групоиди дефинирано со идентитетот $(xy)^2 = x^2y^2$ се разгледувани во трудот [4]. Пред повеќе од 20 години, заедно со професор Чупона, добивме каноничен опис на слободни објекти во многуобразието групоиди кои го задоволуваат идентитетот $(xy)^n = x^n y^n$ за некои групоидни степени x^n . Овој резултат не беше публикуван, а прашањето за наоѓање каноничен опис на слободни групоиди за произволен групоиден степен x^n е сеуште отворено. Во овој труд е дадено мало подобрување на резултатот од пред 20 години, односно е даден каоничен опис на слободни групоиди во многуобразието групоиди дефинирано со идентитетот $(xy)^n = x^n y^n$, за едноставни групоидни степени x^n . За такви степени, слободните групоиди се карактеризирани со помош на инјективните групоиди од тоа многуобразие.

Клучни зборови: многуобразие групоиди, слободен групоид, групоидни степени