ON FREE GROUPOIDS WITH $(x y)^{n}=x^{\boldsymbol{n}} \boldsymbol{y}^{\boldsymbol{n}}$

Dončo Dimovski, Gjorgji Čupona
Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia e-mail: ddimovskid@gmail.com

We investigate free objects in the variety of groupoids which satisfy the identity $(x y)^{n}=x^{n} y^{n}$. Under certain condition for the groupoid power x^{n}, i.e. for simple groupoid powers, a canonical description for free groupoids in such varieties is given and they are characterized by the injective groupoids in these varieties.

Key words: variety of groupoids, free groupoid, groupoid powers

INTRODUCTION

In the papers [3,5,6,8,9], Čupona and coauthors investigated free objects in varieties of groupoids satisfying some identities among groupoid powers. Free objects in the variety of groupoids satisfying the law $(x y)^{2}=x^{2} y^{2}$ are investigated in [4]. Almost 20 years ago, together with Professor Čupona, we obtained a canonical description of free objects in the variety of groupoids satisfying the identity $(x y)^{n}=x^{n} y^{n}$ for some groupoid powers x^{n}. This result was not published, and the question of finding a canonical description of free objects for an arbitrary groupoid power x^{n} is still open. In this paper we present a slight improvement of the above mentioned, canonical description.

First, we state some necessary preliminaries.
Let $\boldsymbol{G}=(G, \cdot)$ be a groupoid, i.e. an algebra with a binary operation $(x, y) \rightarrow x y$ on G. If $a=b c$ for $a, b, c \in G$, we say that b, c are divisors of a in \boldsymbol{G}. A sequence a_{1}, a_{2}, \ldots of elements of G is said to be a divisor chain in \boldsymbol{G} if a_{i+1} is a divisor of a_{i}. We say that $a \in G$ is a prime in \boldsymbol{G} if the set of divisors of a in \boldsymbol{G} is empty. A groupoid $\boldsymbol{G}=(G, \cdot)$ is said to be injective if $x y=u v$ implies $(x, y)=(u, v)$, for any $x, y, u, v \in G$. By a "free groupoid" we mean "free groupoid in the variety of groupoids" (i.e. an "absolutely free groupoid").

The following characterization of free groupoids is well known (see for example [1], I.1.)
Theorem. 1.1 A groupoid $\boldsymbol{F}=(F, \cdot)$ is free if and only if (iff) it satisfies the following conditions.
(1) Every divisor chain in \boldsymbol{F} is finite.
(2) \boldsymbol{F} is injective.

Then the set B of primes in \boldsymbol{F} is nonempty and it is the unique basis of \boldsymbol{F}.

Throughout the paper, a free groupoid with basis B will be denoted by \boldsymbol{F} or $\boldsymbol{F}(B)$. For any $v \in$ F, we define the length $|v|$ and the set $P(v)$ of parts of v by:

$$
|b|=1, \quad|t u|=|t|+|u|
$$

$P(b)=\{b\}, P(t u)=\{t u\} \cup P(t) \cup P(u)$
for every $b \in B, t, u \in F$.

GROUPOID POWERS

We recall some definitions, notions and statements from [7].

Let $\boldsymbol{E}=(E, \cdot)$ be a free groupoid with one-element basis $\{e\}$. The elements of E will be denoted by f, g, h, \ldots and called groupoid powers.

If $\boldsymbol{G}=(G, \cdot)$ is a groupoid, then each $f \in E$ induces a transformation f^{G} of G (called the interpretation of f in \boldsymbol{G}) defined by:

$$
f^{\boldsymbol{G}}(x)=\varphi_{x}(f)
$$

where $\varphi_{x}: E \rightarrow G$ is the unique homomorphism from \boldsymbol{E} to \boldsymbol{G} such that $\varphi_{x}(e)=x$. In other words

$$
e^{\boldsymbol{G}}(x)=x,(f h)^{G}(x)=f^{\boldsymbol{G}}(x) h^{\boldsymbol{G}}(x)
$$

for any $f, h \in E, x \in G$. (For a fixed groupoid \boldsymbol{G} we usually write $f(x)$ instead of $f^{\boldsymbol{G}}(x)$.)

Each $f \in E$ induces a transformation f^{E} of E. We define a new operation " \circ " on E by:

$$
f \circ g=f^{E}(g)=f(g)
$$

So, we obtain an algebra (E, \circ, \cdot) with two operations, such that for any $f, g, h \in E$:

$$
\begin{gathered}
e \circ f=f \circ e=f \\
(f g) \circ h=(f \circ h)(g \circ h)
\end{gathered}
$$

A power $f \in E$ is said to be irreducible if $f \neq e$ and $f=g \circ h$ implies $g=e$ or $h=e$.

The following facts for any $f, g, p, q \in E$, $t, u \in F$ can be shown by induction on lengths.
$2.1|f(t)|=|f||t|$.
$2.2 t \in P(f(t))$.
$2.3(f(t)=g(u)$ and $|t|=|u|)$ iff
$(f=g$ and $t=u)$.
$2.4(f(t)=g(u)$ and $|t| \geq|u|)$ iff
$(\exists!h \in E)(t=h(u)$ and $g=h(f))$.
$2.5(E, \circ, e)$ is a cancellative monoid.
2.6 If the length of a power f is a prime integer, then the power f is irreducible.
2.7 If $f \circ p=g \circ q$ and p, q are irreducible, then $f=g$ and $p=q$.
2.8 For $f \neq e$ there is a unique sequence of irreducible powers $p_{1}, p_{2}, \ldots, p_{k}$ such that

$$
f=p_{1} \circ p_{2} \circ \ldots \circ p_{k}
$$

2.9 The monoid (E, \circ, e) is a free monoid, with a basis the countable set of irreducible powers.

For a fixed groupoid power $f \in E$ of length n we will write x^{n} instead of $f(x)$. For $n=2$ there is only one power, $x^{2}=x \cdot x$, but for $n \geq 3$ there are different n-th powers. For example, $x^{3}=x^{2} \cdot x$ and $x^{3}=x \cdot x^{2}$ are different powers, and they are the only powers of length three. There are five different powers of length four: $x^{4}=x^{3} \cdot x, x^{4}=x^{2} \cdot x^{2}$, $x^{4}=x \cdot x^{3}, x^{4}=\left(x \cdot x^{2}\right) \cdot x$ and $x^{4}=x \cdot\left(x \cdot x^{2}\right)$. It is well known that there are $\frac{(2 n-2)!}{n!(n-1)!}$ groupoid powers of length n, i.e. n-th powers (see, for example [2] page 125, or [7] (1.8)).

A CLASS OF GROUPOIDS DETERMINED BY GROUPOID POWERS

Let $f \in E$ be a groupoid power of length n and let B be a nonempty set. We will present a specific construction of a groupoid, denoted by $\boldsymbol{R}(f, B)$, determined by f and B.

If $\boldsymbol{G}=(G, \cdot)$ is a given groupoid, for any nonnegative integer k we define a transformation $(k): x \rightarrow x^{(k)}$ of G as the k-th power of f in the mo$\operatorname{noid}(E, \circ, e)$, i.e.

$$
x^{(0)}=x, x^{(k+1)}=f\left(x^{(k)}\right)
$$

Using the notion x^{n} instead of f, we have:

$$
x^{(0)}=x, x^{(k+1)}=\left(x^{(k)}\right)^{n}
$$

Since a free groupoid \boldsymbol{F} is injective, it follows that the transformation (k) is injective on \boldsymbol{F}, for any $k \geq 0$. Thus, for each $k \geq 0$, there exists an injective partial transformation $(-k): x \rightarrow x^{(-k)}$ on \boldsymbol{F} defined by:

$$
y^{(-k)}=x \text { iff } x^{(k)}=y
$$

For any $u \in F$, there exists a largest integer m, such that $u^{(-m)} \in F$. We denote this integer by $[u]$ and call it the exponent of u in F.

It is easy to show that the following facts are true for all $u, v \in F$ and all integers t and s.
$3.1 u^{(t)} \in F$ iff $t+[u] \geq 0$.
3.2 If $t+[u] \geq 0$, then $\left|u^{(t)}\right|=n^{t}|u|$.
3.3 If $t+[u] \geq 0$ and $t+s+[u] \geq 0$, then $\left(u^{(t)}\right)^{(s)}=u^{(t+s)}$.
3.4 If $t+[u] \geq 0$ and $s-t+[v] \geq 0$, then $\left(u^{(t)}=v^{(s)}\right.$ iff $\left.u=v^{(s-t)}\right)$.
Definition 3.1 We define $R(f, B)$, as the least subset of F such that $B \subseteq R(f, B)$ and:
$v w \in R(f, B)$ iff
$[(v w=f(u)$ for some $u \in R(f, B))$ or
$(v, w \in R(f, B)$ and $\min \{[v],[w]\}=0)]$.
We will often write R instead of $R(f, B)$.
Let $S=R \backslash\left\{u^{(1)}=f(u) \mid u \in R\right\}$.
Proposition 3.5 For every $h \in E$ and $x \in F$,

$$
h(x) \in S \text { implies } x \in R
$$

Proof. The proof is by induction on the length $|h|$ of h. For $|h|=1, h(x)=x \in S$ implies $x \in R$.

Assume that for any $g \in E$ with $|g|<k$, $g(x) \in S$ implies $x \in R$. Let $h=h_{1} h_{2}$ and $|h|=k$. Then $h(x)=h_{1}(x) h_{2}(x) \in S \subseteq R$ implies that $h_{1}(x), h_{2}(x) \in R$ and $\min \left\{\left[h_{1}(x)\right],\left[h_{2}(x)\right]\right\}=0$, i.e. $\left[h_{i}(x)\right]=0$ for some $i \in\{1,2\}$. This implies that $h_{i}(x) \in S$, and the inductive hypothesis, since $\left|h_{i}\right|<k$, implies that $x \in R$.
Proposition 3.6 For every $u \in F$,

$$
u^{(1)}=f(u) \in R \text { iff } u \in R
$$

Proof. The definition of R implies that, if $u \in R$, then $u^{(1)}=f(u) \in R$.

Let $u^{(1)} \in R$. If $u^{(1)}=v^{(1)}$ for some $v \in R$, then, since the transformation (1) is injective, it follows that $u=v \in R$. If $u^{(1)} \neq v^{(1)}$ for every $v \in R$, i.e. $u^{(1)} \in S$, then Proposition 3.5 implies that $u \in R$.
Proposition 3.7 If for an integer t and $u \in F$, $t+[u] \geq 0$, then $\left(u^{(t)} \in R\right.$ iff $\left.u \in R\right)$.
Proof. The proof is by induction on t, starting from $-[u]$, using the fact 3.3 and Proposition 3.6.
Proposition 3.8 For every $u, v \in R(f, B)$,

$$
\left(u^{(-m)} v^{(-m)}\right)^{(m)} \in R(f, B)
$$

where $m=\min \{[u],[v]\}$.
Proof. The fact that $m=\min \{[u],[v]\}$ implies that $-m+[u] \geq 0$ and $-m+[v] \geq 0$, and so, Proposition 3.7 implies that $u^{(-m)}, v^{(-m)} \in R$. Since $m=$ $[u]$ or $m=[v]$, we have $\left[u^{(-m)}\right]=0$ or $\left[v^{(-m)}\right]=$ 0 , and the definition of R implies that

$$
\left(u^{(-m)} v^{(-m)}\right)^{(m)} \in R(f, B)
$$

If for $u, v \in R(f, B)$ we define $u * v$ by:

$$
u * v=\left(u^{(-m)} v^{(-m)}\right)^{(m)}
$$

where $m=\min \{[u],[v]\}$, then $\boldsymbol{R}=(R(f, B), *)$ is a groupoid.
Proposition 3.9 For every $u, v \in R(f, B)$,

$$
u^{(1)} * v^{(1)}=(u * v)^{(1)}
$$

Proof. If $m=\min \{[u],[v]\}$, then

$$
\min \left\{\left[u^{(1)}\right],\left[v^{(1)}\right]\right\}=m+1
$$

The definition of $*$ and the fact 3.3 imply:

$$
\begin{aligned}
u^{(1)} * v^{(1)} & =\left(\left(u^{(1)}\right)^{(-(m+1))}\left(v^{(1)}\right)^{(-(m+1))}\right)^{(m+1)} \\
& =\left((u)^{(-m)}(v)^{(-m)}\right)^{(m+1)} \\
& =\left(\left((u)^{(-m)}(v)^{(-m)}\right)^{(m)}\right)^{(1)} \\
& =(u * v)^{(1)}
\end{aligned}
$$

Let \mathcal{M} be a variety of groupoids. If $\boldsymbol{G} \in \mathcal{M}$, we say that \boldsymbol{G} is an \mathcal{M}-groupoid, and if it is free in \mathcal{M}, we say that it is \mathcal{M}-free.

For a groupoid power $f \in E$, i.e. x^{n}, we denote by \mathcal{M}_{f} the variety of all the groupoids satisfying the identity

$$
\begin{gathered}
f(x y)=f(x) f(y), \text { i.e. } \\
(x y)^{n}=x^{n} y^{n}
\end{gathered}
$$

For the groupoid power $e^{2}=e e$, i.e. for the groupoid power x^{2}, we denote $\mathcal{M}_{e^{2}}$ by \mathcal{M}_{2}.

We state the following theorems, proven in [4] in their original forms.
Theorem 1. $\boldsymbol{R}=\left(R\left(e^{2}, B\right), *\right)$ is \mathcal{M}_{2}-free and the set B is the unique basis for \boldsymbol{R}.
Theorem 2. An \mathcal{M}_{2} - groupoid $\boldsymbol{H}=(H, \cdot)$ is \mathcal{M}_{2}-free iff the following conditions hold.
(i) Every divisor chain in \boldsymbol{H} is finite.
(ii) If $x^{2}=y^{2}$, then $x=y$.
(iii) If $x y=u v, x \neq y$ and $u \neq v$, then $x=u$ and $y=v$.
(iv) If $x^{2}=y z$ and $y \neq z$, then there are u, v such that $x=u v, y=u^{2}$ and $z=v^{2}$.

Then the set P of primes in \boldsymbol{H} is nonempty and the unique basis for \boldsymbol{H}.

Theorem 3. If \boldsymbol{H} is an \mathcal{M}_{2}-free groupoid, then there exist subgroupoids $\boldsymbol{G}, \boldsymbol{Q}$ of \boldsymbol{H}, such that \boldsymbol{G} is not $\mathcal{M}_{2^{-}}$ free, and \boldsymbol{Q} is \mathcal{M}_{2}-free with an infinite rank.

In [4], for any positive integer n, the groupoid power e^{n}, i.e. x^{n}, is defined as follows:

$$
\begin{gathered}
e^{1}=e, e^{k+1}=e^{k} e, \text { i.e. } \\
x^{1}=e, x^{k+1}=x^{k} x
\end{gathered}
$$

For the groupoid power e^{n}, we denote $\mathcal{M}_{e^{n}}$ by \mathcal{M}_{n}.

The generalizations of Theorems $1-3$, are also discussed in [4]. Theorem 1' and Theorem 3' are the same as Theorem 1 and Theorem 3, where 2 is replaced by n. Theorem 2^{\prime} is obtained from Theorem 2 by replacing 2 by n and by replacing (ii), (iii) and (iv) by:
(ii') If $x^{n}=y^{n}$, then $x=y$.
(iii') If $x y=u v, x \neq y^{n-1}$ and $u \neq v^{n-1}$, then $x=u$ and $y=v$.
(iv') If $x^{n}=y z$ and $y \neq z^{n-1}$, then there are u, v such that $x=u v, y=u^{n}$ and $z=v^{n}$.

We note that Theorems 2 and 2' characterize \mathcal{M}_{2}-free and \mathcal{M}_{n}-free groupoids in the same way as Theorem 1.1 characterizes free groupoids.

It is easy to check that if $u v \in R\left(e^{2}, B\right)$, then $u, v \in R\left(e^{2}, B\right)$, but this is not the case for $R\left(e^{n}, B\right)$ when $n \geq 3$. For example, if $b \in B$ and $n=3$, then
$b^{(2)} \in\left(b^{(1)}\right)^{(1)}=\left(b^{(1)}\right)^{2} \cdot b^{(1)} \in R\left(e^{3}, B\right)$, $\operatorname{but}\left(b^{(1)}\right)^{2} \notin R\left(e^{3}, B\right)$.

From now on, for a groupoid power $g \in E$, of length p, we will often write: $g^{F}(x)=x^{p}$ for $x \in F$, and $g^{R}(x)=x_{*}^{p}$ for $x \in R(f, B)$.

The following examples will show that in general, for a groupoid power $f \in E, \boldsymbol{R}=(R(f, B), *)$ does not have to belong to \mathcal{M}_{f}, and there are $u \in R$ such that $\left[u_{*}^{n}\right]=0$, where $f(x)=x^{n}$.
Example 3.1. Let $f=e^{2} \circ\left(\left(e^{2}\right)^{2} e\right) \in E$ and let $B=\{a\}$. The length of f is 10 , and we write $f(x)=$ $x^{10}=\left(\left(x^{2}\right)^{2} x\right)^{2}=\left(x^{5}\right)^{2}=x^{(1)}$.

Let $u=a^{5}=\left(a^{2}\right)^{2} a$. Since $a \in B \subseteq R$, and $[a]=0$, we have that $a^{2} \in R$ and $\left[a^{2}\right]=0$. This implies that $\left(a^{2}\right)^{2} \in R$ and $\left[\left(a^{2}\right)^{2}\right]=0$. Next, we obtain that $\left(a^{2}\right)^{2} a \in R$ and $\left[\left(a^{2}\right)^{2} a\right]=0$. All this implies that $u \in R$ and $[u]=0$.

Now, we calculate $u_{*}^{10}=\left(\left(u_{*}^{2}\right)_{*}^{2} * u\right)_{*}^{2}$, as follows:
$u_{*}^{2}=u^{2}=\left(a^{5}\right)^{2}=a^{10}=a^{(1)} ;$
$\left(u_{*}^{2}\right)_{*}^{2}=a^{(1)} * a^{(1)}=(a * a)^{(1)}=\left(a^{2}\right)^{(1)} ;$
$\left(u_{*}^{2}\right)_{*}^{2} * u=\left(a^{2}\right)^{(1)} * a^{5}=\left(a^{2}\right)^{(1)} a^{5} ;$ and
$u_{*}^{10}=\left(a^{2}\right)^{(1)} a^{5} *\left(a^{2}\right)^{(1)} a^{5}=\left(\left(a^{2}\right)^{(1)} a^{5}\right)^{2}$.

We see that $\left[u_{*}^{10}\right]=0$.
Next, let $v=u$. Then:

$$
\begin{aligned}
& (u * v)_{*}^{10}=\left(u_{*}^{2}\right)_{*}^{10}=\left(a^{(1)}\right)_{*}^{10}=a^{(2)} ; \text { and } \\
& u_{*}^{10} * v_{*}^{10}=\left(\left(\left(a^{2}\right)^{(1)} a^{5}\right)^{2}\right)^{2} . \\
& \text { Thus, } u_{*}^{10} * v_{*}^{10} \neq(u * v)_{*}^{10} .
\end{aligned}
$$

Example 3.2. Let $f=e^{3} \circ e^{2} \circ e^{3} \in E$ and let $B=$ $\{a, b\}$. The length of f is 18 , and we write $f(x)=$ $x^{18}=\left(\left(x^{3}\right)^{2}\right)^{3}=x^{(1)}$. Let $u=\left(\left(a^{3}\right)^{3}\right)^{2}$. Since $a \in B \subseteq R$, and $[a]=0$, we have that $a^{2} \in R$ and $\left[a^{2}\right]=0$. This implies that $a^{3}=a^{2} a \in R$ and $\left[a^{3}\right]=0$. Next, $\left(a^{3}\right)^{2} \in R$ and $\left[\left(a^{3}\right)^{2}\right]=0$. This, together with $a^{3} \in R$, implies that $\left((a)^{3}\right)^{3} \in R$ and $\left[\left(a^{3}\right)^{3}\right]=0$, and so, $u \in R$ and $[u]=0$.

Now, we calculate $u_{*}^{18}=\left(\left(u_{*}^{3}\right)_{*}^{2}\right)_{*}^{3}$ as follows: $u_{*}^{2}=u * u=u^{2}$ and $\left[u^{2}\right]=0$; $u_{*}^{3}=u_{*}^{2} * u=u^{2} * u=u^{3}$
$=\left(\left(\left(a^{3}\right)^{3}\right)^{2}\right)^{3}=\left(a^{3}\right)^{(1)}$; $\left(u_{*}^{3}\right)_{*}^{2}=\left(a^{3}\right)^{(1)} *\left(a^{3}\right)^{(1)}=\left(\left(a^{3}\right)^{2}\right)^{(1)} ;$ $\left(\left(u_{*}^{3}\right)_{*}^{2}\right)_{*}^{2}=\left(\left(a^{3}\right)^{2}\right)^{(1)} *\left(\left(a^{3}\right)^{2}\right)^{(1)}$

$$
=\left(\left(\left(a^{3}\right)^{2}\right)^{2}\right)^{(1)} ;
$$

$\left(\left(u_{*}^{3}\right)_{*}^{2}\right)_{*}^{3}=\left(\left(\left(a^{3}\right)^{2}\right)^{2}\right)^{(1)} *\left(\left(a^{3}\right)^{2}\right)^{(1)}$

$$
=\left(\left(\left(a^{3}\right)^{2}\right)^{3}\right)^{(1)}=\left(a^{(1)}\right)^{(1)}=a^{(2)}
$$

We see that $\left[u_{*}^{18}\right]=2$, while $[u]=0$.
In the same way, for $v=\left(\left(b^{3}\right)^{3}\right)^{2}$, we obtain that $v_{*}^{18}=b^{(2)}$.

The previous calculations imply that

$$
u_{*}^{18} * v_{*}^{18}=a^{(2)} * b^{(2)}=(a b)^{(2)}
$$

In the calculation of $(u * v)_{*}^{18}$, we have:
$u * v=u v ; \quad(u * v)_{*}^{3}=(u v)_{*}^{3}=(u v)^{3} ;$ $\left((u * v)_{*}^{3}\right)_{*}^{2}=\left((u v)^{3}\right)_{*}^{2}=\left((u v)^{3}\right)^{2} ;$ and $(u * v)_{*}^{18}=\left(\left((u v)^{3}\right)^{2}\right)_{*}^{3}=\left(\left((u v)^{3}\right)^{2}\right)^{3}$

$$
=(u v)^{(1)} .
$$

Since $(a b)^{(2)} \neq(u v)^{(1)}$, it follows that

$$
u_{*}^{18} * v_{*}^{18} \neq(u * v)_{*}^{18} .
$$

We see that the groupoid powers in the previous examples are not irreducible, and moreover, the groupoid power $x^{n}=\left(x^{p}\right)^{q}$ has $\left(x^{q}\right)^{2}$ as its part, i.e. $\left(x^{q}\right)^{2} \in P\left(x^{n}\right)$. That is why we consider a special class of groupoid powers, called simple.

We say that a groupoid power x^{n} is complex, if $x^{n}=\left(\left(x^{p}\right)^{r}\right)^{q}$ for some $p, q \geq 2$ and $r \geq 1$, and $P\left(x^{n}\right)$ contains $(x)^{q}\left(x^{r}\right)^{q}$ or $\left(x^{r}\right)^{q}(x)^{q}$. We say that a power x^{n} is simple, if it is not complex.

Irreducible groupoid powers are simple. Since any power x^{n}, for a prime n, is irreducible, it follows that it is simple.

\mathcal{M}_{f}-FREE GROUPOIDS

Let $f=g h \in E \backslash\{e\}$. For a given groupoid $\boldsymbol{G}=(G, \cdot)$ let $T(f, G) \subseteq G \times G$ be defined as:

$$
T(f, G)=\{(g(u), h(u)) \mid u \in G\} .
$$

With the notation $f(x)=x^{n}=x^{p} x^{q}$,

$$
T(f, G)=\left\{\left(u^{p}, u^{q}\right) \mid u \in G\right\} .
$$

Theorem 4.1 Let $f=g h, g, h \in E \backslash\{e\}$ and with the notation $f(x)=x^{n}=x^{p} x^{q}$, let a groupoid $\boldsymbol{H}=$ (H, \cdot) satisfies the following conditions.
(i) Every divisor chain in \boldsymbol{H} is finite.
(ii) If $x^{n}=y^{n}$ in \boldsymbol{H}, then $x=y$.
(iii) If $x y=u v$ in \boldsymbol{H}, and $x y \neq z^{n}$ for each $z \in G$, then $x=u$ and $y=v$.
(iv) If $x^{n}=y z$ in \boldsymbol{H} and $(y, z) \notin T(f, H)$, then there are $u, v \in H$, so that $x=u v, y=u^{n}$ and $z=v^{n}$.

Then, the groupoid \boldsymbol{H} is \mathcal{M}_{f}-free and the set B of primes in \boldsymbol{H} is nonempty and is the unique basis of \boldsymbol{H}.
Proof. The proof is almost the same as the proof of Proposition 2.3 from [4], which is in fact Theorem 4.1 for $f=e^{2}$, i.e. for the power x^{2}. The only difference is the following.

The conditions (ii), (iii) and (iv), imply that, for the power x^{2}, any element $u \in H$ has at most three divisors (shown in [4]), while for any other power, any element $u \in H$ has at most four divisors. The proof of this for a power different than x^{2} is as follows. Let $u \in H$.

If u is prime, then it has 0 divisors. If u is not prime, we consider two cases.
Case 1 . For any $x \in H, u \neq x^{n}$. Then, the condition (iii) implies that u has at most two divisors.

Case 2. For some $x \in H, u=x^{n}=x^{p} x^{q}$. The condition (ii) implies that the element x is unique. If x is prime and $u=y z$, then $(y, z) \notin T(f, H)$ would imply that there are $v, w \in H$, so that $x=v w$, that is not possible. Hence, for x prime, u has at most two divisors. If x is not prime, i.e. if $x=v w$, then $u=$ $x^{n}=x^{p} x^{q}=v^{n} w^{n}$, and conditions (ii) and (iv) imply that u has at most four divisors.
Theorem 4.2 If $f(x)=x^{n}$, and $u_{*}^{n}=u^{n}$ for every $u \in(R(f, B), *)$, then $(R(f, B), *)$ satisfies the conditions (i) to (iv), from Theorem 4.2, and so it is $\mathcal{M}_{f^{-}}$ free with basis B.
Proof. Let $x^{n}=x^{p} x^{q}$.
If $x * y=z$, then $|z|>|x|,|z|>|y|$, and this implies that \boldsymbol{R} satisfies (i).

If $x_{*}^{n}=y_{*}^{n}$, then $x^{n}=y^{n}$ in \boldsymbol{F}, and so $x=y$. Hence, \boldsymbol{R} satisfies (ii).

If $x * y=u * v$ and $x * y \neq z_{*}^{n}$ for any $z \in$ R, then $\min \{[x],[y]\}=0=\min \{[u],[v]\}$. This implies that $x * y=x y, u * v=u v$, and $x y=u v$ in \boldsymbol{F}. So, $x=u$ and $y=v$. Hence, \boldsymbol{R} satisfies the condition (iii).

Let $x_{*}^{n}=y * z$ and $(y, z) \notin T(f, R)$.
If $\min \{[y],[z]\}=0$, then

$$
x^{p} x^{q}=x^{n}=x_{*}^{n}=y * z=y z
$$

and so, $(y, z) \in T(f, R)$. Hence, $\min \{[y],[z]\}>0$, and this implies that there are $u, v \in R$, such that $y=u^{n}=u_{*}^{n}, z=v^{n}=v_{*}^{n}$, and $x^{n}=(u * v)^{n}$, i.e. $x=u * v$. Hence, \boldsymbol{R} satisfies (iv).

Theorem 4.3 Let $f \in E$ be a simple groupoid power, with $f(x)=x^{n}$. Then, for every $u \in(R(f, B), *)$,

$$
u_{*}^{n}=u^{n}
$$

Proof. By Proposition 3.9 it is enough to consider $x \in R$ with $[x]=0$. We will show that $x_{*}^{t}=x^{t}$, for any part x^{t} of x^{n}.
(1) Since $[x]=0$, it follows that $x_{*}^{t}=x * x=x^{2}$.
(2) Let $x_{*}^{t}=x^{t}$, for any part x^{t} of x^{n} with $t<k$.
(2.1) Let $x^{k}=x^{q} x^{s}$ be a part of x^{n} with $q<s$.

Then, $x_{*}^{k}=x_{*}^{q} * x_{*}^{s}=x^{q} * x^{s}$.
We will show that $\min \left\{\left[x^{q}\right],\left[x^{s}\right]\right\}=0$, which implies that $x_{*}^{k}=x^{k}$. Assume contrary, that, $x^{q}=u^{n}$ and $x^{s}=v^{n}$ for some $u, v \in R$. Since $[x]=0$ and $k \leq n$, it follows that $2 \leq q, s<n$. This, implies that, $x=u^{m}$ and $x=v^{p}$ for some $m, p \geq 2$, and $u^{n}=\left(u^{m}\right)^{q}, v^{n}=\left(v^{p}\right)^{s}$, and we obtain that

$$
z^{n}=\left(z^{m}\right)^{q}=\left(z^{p}\right)^{s}
$$

Since $q<s$, it follows that $z^{n}=\left(z^{m}\right)^{q}=\left(z^{p}\right)^{s}$, $z^{m}=\left(z^{p}\right)^{r}$ and $z^{s}=\left(z^{r}\right)^{q}$. With all this, we have: $x^{n}=\left(\left(x^{p}\right)^{r}\right)^{q}$ and $x^{q} x^{s}=x^{q}\left(x^{r}\right)^{q}$ is a part of x^{n}, i.e. the power x^{n} is not simple. This is a contradiction.
(2.2) The proof that $x_{*}^{k}=x^{k}$, for $x^{k}=x^{s} x^{q}$ with $q<s$ is the same as the proof in (2.1).
(2.3) Let $x^{k}=x^{q} x^{s}$ be a part of x^{n} with $q=s$, but possibly different powers x^{q}, x^{s}, and let $x^{q}=u^{n}$ and $x^{s}=v^{n}$ for some $u, v \in R$. Similarly as in (2.2), we obtain that, $x=u^{m}=v^{p}$, for some $m, p \geq 2$, and $u^{n}=\left(u^{m}\right)^{q}, v^{n}=\left(v^{p}\right)^{s}$. Now, $q=s$ and $s p=n=q m$, imply that $p=m$. This, together with $u^{m}=v^{p}$ in \boldsymbol{F} implies that $u=v$ and z^{m}, z^{p} are the same powers. Next, $\left(u^{m}\right)^{q}=\left(v^{p}\right)^{s}$ in \boldsymbol{F} implies that z^{q}, z^{s} are the same powers. All this implies
that, $x^{n}=\left(\left(x^{p}\right)^{1}\right)^{q}$ and $x^{q} x^{q}=x^{q}\left(x^{1}\right)^{q}$ is a part of x^{n}, i.e. x^{n} is not simple. Hence, $\left[x^{q}\right]=0$ or $\left[x^{s}\right]=0$, and $x_{*}^{k}=x^{k}$.

The following generalization of Theorem 1 from [4], follows from Theorems 4.2 and 4.3.
Theorem 4.4 If $f \in E$ is a simple groupoid power, then $(R(f, B), *)$ is \mathcal{M}_{f}-free with basis B, and satisfies the conditions (i), (ii), (iii) and (iv) from Theorem 4.1.

The next theorem characterizes \mathcal{M}_{f}-free groupoids, for a simple power f, and it is a generalization of Theorem 2 from [4] and Theorem 1.1. Its proof follows from Theorems 4.1, 4.2 and 4.3.
Theorem 4.5 Let $f \in E$ be a simple groupoid power. A groupoid $\boldsymbol{H}=(H, \cdot)$ is \mathcal{M}_{f}-free if and only if it satisfies the conditions (i), (ii), (iii) and (iv) from Theorem 4.1. Then, the set B of primes in H is nonempty and is the unique basis of \boldsymbol{H}.

REFERENCES

[1] R.H.Bruck, A survey of binary systems, Berlin: Springer-Verlag, 1958.
[2] P. M. Cohn, Universal algebra, New York, Harper\&Row, 1965.
[3] Gj. Čupona, N. Celakoski, Free groupoids with $\mathrm{x}^{\mathrm{n}}=$ x , Proc. First Congress of Math. and Inf. of Macedonia, 1996, SMIM, (1998), pp. 19-25.
[4] Gj. Čupona, N. Celakoski, Free groupoids with $(\mathrm{xy})^{2}=\mathrm{x}^{2} \mathrm{y}^{2}$, Contributions, Sec. Math. Tech. Sci., MANU, XVII, 1-2, (1996), pp. 5-17.
[5] Gj. Čupona, N. Celakoski, Free groupoids with $\mathrm{xy}^{2}=\mathrm{xy}$, Math. Bulletin, 21 (47) (1997), pp. 5-16.
[6] Gj. Čupona, N. Celakoski, On groupoids with the identity $\mathrm{x}^{2} \mathrm{y}^{2}=\mathrm{xy}$, Contributions, Sec. Math. Tech. Sci., MANU, XVIII, 1-2 (1997), pp. 5-15.
[7] Gj. Čupona, N. Celakoski, S. Ilić, Groupoid powers, Math. Bulletin, 25 (51) (2001), pp. 5-12.
[8] Gj. Čupona, N. Celakoski, B. Janeva, Free groupoids with axioms of the form $x^{m+1} y=x y$ and/or $\mathrm{xy}^{\mathrm{m}+1}=\mathrm{xy}$, Novi Sad J. Math., 292 (1999), pp. 131-147.
[9] Gj. Čupona, S. Ilić, Free groupoids with $\mathrm{x}^{\mathrm{n}}=\mathrm{x}$, II, Novi Sad J. Math., 291 (1999), pp. 147-154.

ЗА СЛОБОДНИ ГРУПОИДИ СО $(x y)^{n}=x^{n} y^{n}$

Дончо Димовски, Г̄орі́и Чупона

Македонска академија на науките и уметностите, Скопје, Република Македонија
Во трудовите [3,5,6,8,9], Чупона со соработниците ги истражува слободните објекти во многуобразија групоиди кои задоволуваат некои идентитети меѓу групоидни степени. Слободни објекти во многуобразието групоиди дефинирано со идентитетот $(x y)^{2}=x^{2} y^{2}$ се разгледувани во трудот [4]. Пред повекее од 20 години, заедно со професор Чупона, добивме каноничен опис на слободни објекти во многуобразието групоиди кои го задоволуваат идентитетот $(x y)^{n}=x^{n} y^{n}$ за некои групоидни степени x^{n}. Овој резултат не беше публикуван, а прашањето за наоѓање каноничен опис на слободни групоиди за произволен групоиден степен x^{n} е сеуште отворено. Во овој труд е дадено мало подобрување на резултатот од пред 20 години, односно е даден каоничен опис на слободни групоиди во многуобразието групоиди дефинирано со идентитетот $(x y)^{n}=x^{n} y^{n}$, за едноставни групоидни степени x^{n}. За такви степени, слободните групоиди се карактеризирани со помош на инјективните групоиди од тоа многуобразие.

Клучни зборови: многуобразие групоиди, слободен групоид, групоидни степени

