ON A CLASS OF PRESENTATIONS IN VARIETIES OF VECTOR VALUED SEMIGROUPS

Irena Stojmenovska
University American College, Skopje, Republic of Macedonia e-mail: irena.stojmenovska@uacs.edu.mk
To the memory of Professor Gjorgji Čupona, with deep respect and immense gratitude

Abstract

We define a special class of (n, m)-semigroup presentations in vector varieties of (n, m)-semigroups and apply previously obtained results on existence of effective reductions within, under certain conditions. As a consequence, good combinatorial descriptions are provided.

Key words: (n, m)-semigroup, (n, m)-presentation, variety, reduction

INTRODUCTION

This work is a continuation of our results presented in [7, 8, 9]. In [10] we have discussed the word problem solvability for some classes of vector (n, m)-presentations. Here we try to apply some of those results for varieties of (n, m)-semigroups, in particular for some classes of vector varieties of (n, m) semigroups. The introductory notions, basic definitions, and properties are incorporated in the review paper [10], that is our main reference paper. Bellow we annex few additional details necessary for the rest of the text.

- For an (n, m)-presentation of an (n, m) semigroup $\langle B ; \Delta\rangle$ (that is the factor (n, m) semigroup $\boldsymbol{F}(\boldsymbol{B}) / \bar{\Delta}$ where $\bar{\Delta}$ is the smallest congruence on $\boldsymbol{F}(\boldsymbol{B})$ such that $\Delta \subseteq \bar{\Delta}$ and $\boldsymbol{F}(\boldsymbol{B}) / \bar{\Delta}$ is an (n, m)-semigroup), it can be easily shown that $\overline{\bar{\Delta}}=\bar{\Delta}([2])$.

Two (n, m)-semigroup presentations $\left\langle B^{\prime} ; \Delta^{\prime}\right\rangle$ and $\left\langle B^{\prime \prime} ; \Delta^{\prime \prime}\right\rangle$ are strictly equivalent if $B^{\prime}=B^{\prime \prime}$ and $\overline{\Delta^{\prime}}=\overline{\Delta^{\prime \prime}}$. We use the notation $\left\langle B^{\prime} ; \Delta^{\prime}\right\rangle \equiv\left\langle B^{\prime \prime} ; \Delta^{\prime \prime}\right\rangle([3])$.

- Given a set of vector (n, m)-relations Δ, we will need to emphasize (in notation) the connection with its corresponding induced binary relations Λ. Thus, we allow elements
from B to be represented as (i, \mathbf{x}) for some $\mathbf{x} \in B^{m}$ and $i \in \mathbb{N}_{m}$. Hence, given $u \in F(B)$ we will also use the notation $\left(i, u_{1}^{i-1} u u_{i+1}^{m}\right)$ where $i \in \mathbb{N}_{m}$ and $u_{v} \in F(B)\left(v \in \mathbb{N}_{m} \backslash\{i\}\right)$. In other words, we have the following notation definition:

$$
u \in F(B) \Longleftrightarrow u=(i, \mathbf{x})
$$

for some $i \in \mathbb{N}_{m}, \mathbf{x}=u_{1}^{m+s k}$, and $s \in \mathbb{N}_{0}$.
(Note that, each element from $F(B) \backslash B$ remains to have a unique representation $\left(i, u_{1}^{m+s k}\right)$ where $i \in \mathbb{N}_{m}$ and $s \geq 1$). Hence, for vector (n, m)-relations Δ and the corresponding induced binary relations Λ, we will also use the following notation

$$
\Delta=\Lambda_{\#}
$$

where

$$
\Lambda_{\#}=\left\{((i, \mathbf{x}),(i, \mathbf{y})) \mid(\mathbf{x}, \mathbf{y}) \in \Lambda, i \in \mathbb{N}_{m}\right\}
$$

PRESENTATIONS IN VARIETIES OF (n, m)-SEMIGROUPS

The varieties of (n, m)-semigroups were defined in [2] and also explored in [3, 8, 9]. We recall basic definitions and properties necessary for the rest of the text.

If $\boldsymbol{F}(\mathbb{N})$ is a free poly- (n, m)-groupoid with a basis \mathbb{N} and $Q=(Q, h)$ is a poly(n, m)-groupoid, for each $\tau \in F(\mathbb{N})$ there exists a smallest $t \in \mathbb{N}$ such that $\tau \in F\left(\mathbb{N}_{t}\right)$
and τ defines a t-ary operation on Q as follows:
i) If $\tau=j \in \mathbb{N}_{t}$ and $\mathbf{a}=a_{1}^{t} \in Q^{t}$ then $\tau(\mathbf{a})=a_{j}$
ii) If $\tau=\left(i, \tau_{1}^{m+s k}\right)$ and $\mathbf{a}=a_{1}^{t} \in Q^{t}$ then $\tau(\mathbf{a})=h_{i}\left(\tau_{1}(\mathbf{a}) \ldots \tau_{m+s k}(\mathbf{a})\right)$, assuming that $\tau_{\nu}(\mathbf{a})$ are already defined.

Let $\tau, \omega \in F(\mathbb{N})$. Then $\tau, \omega \in F\left(\mathbb{N}_{t}\right)$ for some $t \in \mathbb{N}$. A poly- (n, m)-groupoid \boldsymbol{Q} satisfies the (n, m)-identity (τ, ω) (i.e. $\boldsymbol{Q} \vDash(\tau, \omega)$), if $\tau(\mathbf{a})=\omega(\mathbf{a})$ for an arbitrary $\mathbf{a}=a_{1}^{t} \in Q^{t}$.

A class of (n, m)-semigroups \mathcal{V} is a variety if and only if there exists a set of (n, m) identities Θ such that $G \models \Theta$ for every $\boldsymbol{G} \in \mathcal{V}$. This means that $\boldsymbol{G} \models(\tau, \omega)$, for every $(\tau, \omega) \in \Theta$ and every $\boldsymbol{G} \in \mathcal{V}$. We use the notation $\mathcal{V}=\operatorname{Var} \Theta$.
In [8] we gave a description of the complete system of (n, m)-identities $\widehat{\Theta}$ for a variety $\operatorname{Var} \Theta$. We also showed that $\psi_{0}(\boldsymbol{F}(\mathbb{N})) / \widehat{\Theta}$ is a free object in $\operatorname{Var} \Theta$ with basis \mathbb{N} where ψ_{0} is the reduction for $\langle\mathbb{N} ; \emptyset\rangle$ (for more details on ψ_{0}, see [10]). In [9] we explored a special class of varieties of (n, m)-semigroups, called vector varieties of (n, m)-semigroups. They are originally defined in [3], as follows:

Let $p=m+s k, q=m+r k$, where $s, r \geq 0$ and let $\left(i_{1}^{p}, j_{1}^{q}\right) \in \mathbb{N}^{+} \times \mathbb{N}^{+}$. An (n, m) semigroup $\boldsymbol{G}=(G ; g)$ satisfies the vector (n, m)-identity $\left(i_{1}^{p}, j_{1}^{q}\right)$ (i.e. $\boldsymbol{G} \models\left(i_{1}^{p}, j_{1}^{q}\right)$), if $g\left(a_{i_{1}} \ldots a_{i_{p}}\right)=g\left(a_{j_{1}} \ldots a_{j_{q}}\right)$ for an arbitrary $a_{1}^{t} \in G^{t}$, where $t=\max _{\mu, \nu}\left\{i_{\mu}, j_{\nu}\right\}$.

Every vector (n, m)-identity $\left(i_{1}^{p}, j_{1}^{q}\right)$ induces a set of (n, m)-identities $\left(i_{1}^{p}, j_{1}^{q}\right) \# \subseteq$ $\psi_{0}(F(\mathbb{N})) \times \psi_{0}(F(\mathbb{N}))$ defined by: $\left(i_{1}^{p}, j_{1}^{q}\right)_{\#}=$ $\left\{\left(\left(i, i_{1}^{p}\right),\left(i, j_{1}^{q}\right)\right) \mid i \in \mathbb{N}_{m}\right\}$, and moreover, $\boldsymbol{G} \models\left(i_{1}^{p}, j_{1}^{q}\right) \Longleftrightarrow \boldsymbol{G} \models\left(i_{1}^{p}, j_{1}^{q}\right)_{\# \text {. Con- }}$ sequently, if Θ^{\prime} is a set of vector (n, m) identities then it induces a set of (n, m) identities $\Theta_{\#}^{\prime}$, and, $\boldsymbol{G} \models \Theta^{\prime} \Longleftrightarrow \boldsymbol{G} \models \Theta_{\#}^{\prime}$.

Definition 2.1 A variety of (n, m)semigroups \mathcal{V} is called a vector variety of (n, m)-semigroups, if there exists a set of vector (n, m)-identities $\Theta_{\#}^{\prime}$ such that $\mathcal{V}=\operatorname{Var} \Theta_{\#}^{\prime}$.

In continuation we will define (n, m) semigroup presentations in varieties of (n, m)-semigroups. The main idea arises from [3].

Let Θ be a set of (n, m)-identities and let $\boldsymbol{F}(\boldsymbol{B})=(F(B) ; f)$ be a free poly- (n, m) groupoid with basis $B \neq \emptyset$. Every (n, m) identity $(\tau, \omega) \in F\left(\mathbb{N}_{t}\right) \times F\left(\mathbb{N}_{t}\right)$ defines a relation on $F(B)$ given by
$(\tau, \omega)(F(B))=\left\{\left(\tau\left(u_{1}^{t}\right), \omega\left(u_{1}^{t}\right)\right) \mid u_{1}^{t} \in F(B)^{t}\right\}$
Thus, Θ defines a corresponding set $\Theta(F(B)) \subseteq F(B) \times F(B)$ given by

$$
\begin{gathered}
\Theta(F(B))=\bigcup_{(\tau, \omega) \in \Theta}(\tau, \omega)(F(B))= \\
\left\{\left(\tau\left(u_{1}^{t}\right), \omega\left(u_{1}^{t}\right)\right) \mid(\tau, \omega) \in \Theta,\right. \\
\left.\tau, \omega \in F\left(\mathbb{N}_{t}\right), u_{1}^{t} \in F(B)^{t}, t \in \mathbb{N}\right\} .
\end{gathered}
$$

Clearly, $\Theta(F(B))$ is a set of (n, m)-defining relations on B.

The following result is stated in [3], here we give its proof.
Proposition $2.1\langle B ; \Theta(F(B))\rangle$ is a free object in $\operatorname{Var} \Theta$ with basis B.
Proof. Recall that $\langle B ; \Theta(F(B))\rangle=$ $\boldsymbol{F}(\boldsymbol{B}) / \overline{\Theta(F(B))}$ where $\overline{\Theta(F(B))}$ is the smallest congruence on $\boldsymbol{F}(\boldsymbol{B})$ such that $\Theta(F(B)) \subseteq \overline{\Theta(F(B))}$ and $\boldsymbol{F}(\boldsymbol{B}) / \overline{\Theta(F(B))}$ is an (n, m)-semigroup. Let $(\tau, \omega) \in \Theta$. Then $\tau, \omega \in F\left(\mathbb{N}_{t}\right)$ for some $t \in \mathbb{N}$. For an arbitrary sequence $u_{1}^{\overline{\Theta(F(B))}}, \ldots, u_{t}^{\overline{\Theta(F(B))}}$ from $F(B) / \Theta(F(B))$, we have

$$
\begin{aligned}
& \tau\left(u_{1}^{\overline{\Theta(F(B))}} \cdots u_{t}^{\overline{\Theta(F(B))}}\right)= \\
& \left(\tau\left(u_{1}^{t}\right)\right)^{\overline{\Theta(F(B))}}=\frac{\left(\omega\left(u_{1}^{t}\right)\right)^{\overline{\Theta(F(B))}}}{=}= \\
& \omega\left(u_{1}^{\overline{\Theta(F(B))}} \cdots u_{t}^{\Theta(F(B))}\right) .
\end{aligned}
$$

Thus, $\boldsymbol{F}(\boldsymbol{B}) / \overline{\Theta(F(B))} \models(\tau, \omega)$. Hence, $\boldsymbol{F}(\boldsymbol{B}) / \overline{\Theta(F(B))} \quad \models \quad \Theta \quad$ and therefore $\boldsymbol{F}(\boldsymbol{B}) / \overline{\Theta(F(B))} \in \operatorname{Var} \Theta$. It is clear that $\overline{\Theta(F(B))}$ is the smallest congruence on $\boldsymbol{F}(\boldsymbol{B})$ containing $\Theta(F(B))$ and such that $\boldsymbol{F}(\boldsymbol{B}) / \overline{\Theta(F(B))} \in \operatorname{Var} \Theta$, and thus we conclude that $\boldsymbol{F}(\boldsymbol{B}) / \overline{\Theta(F(B))}$ is a free object in $\operatorname{Var} \Theta$. Namely, for arbitraries $\boldsymbol{Q} \in \operatorname{Var} \Theta$ and $\xi: B \rightarrow Q$, there is a unique homomorphic extension $\bar{\xi}: \boldsymbol{F}(\boldsymbol{B}) \rightarrow \boldsymbol{Q}$ and moreover, $\boldsymbol{F}(\boldsymbol{B}) / \operatorname{ker} \bar{\xi} \in \operatorname{Var} \Theta$. The fact that $\overline{\Theta(F(B))}$ is the smallest congruence on $\boldsymbol{F}(\boldsymbol{B})$ such that $\boldsymbol{F}(\boldsymbol{B}) / \overline{\Theta(F(B))}$ is in $\operatorname{Var} \Theta$, implies that $\overline{\Theta(F(B))} \subseteq \operatorname{ker} \bar{\xi}$. Therefore, we define a map $\eta: F(B) / \overline{\Theta(F(B))} \rightarrow Q$, by: $\eta\left(u^{\overline{\Theta(F(B))}}\right)=\bar{\xi}(u)$. It is straightforward to check that η is a homomorphism, since $\bar{\xi}$ is a homomorphism, and
$\eta\left(\operatorname{nat}(\overline{\Theta(F(B))})_{\mid B}\right)=\bar{\xi}_{\mid B}=\xi$. Also, η is unique, since $\bar{\xi}$ is unique.

From now on, the congruence $\overline{\Theta(F(B))}$ will be denoted by $\bar{\Theta}$ and consequently, $\boldsymbol{F}(\boldsymbol{B}) / \overline{\Theta(F(B))}=\boldsymbol{F}(\boldsymbol{B}) / \bar{\Theta}$.

For a given $\Delta \subseteq F(B) \times F(B)$, we have $\Delta \cup \Theta(F(B)) \subseteq F(B) \times F(B)$, that is a set of (n, m)-defining relations on B, and thus $\langle B ; \Delta \cup \Theta(F(B))\rangle$ is an (n, m)-presentation of an (n, m)-semigroup.
Definition 2.2 For given B, Θ, and Δ, we denote the (n, m)-semigroup presentation $\langle B ; \Delta \cup \Theta(F(B))\rangle$ by $\langle B ; \Delta ; \Theta\rangle$, and we say that $\langle B ; \Delta ; \Theta\rangle$ is a presentation of an (n, m)-semigroup in the variety $\operatorname{Var} \Theta$.

In particular, we define vector (n, m) semigroup presentations in (vector) varieties of (n, m)-semigroups.
Definition $2.3\langle B ; \Delta ; \Theta\rangle$ is a vector presentation of an (n, m)-semigroup in $\operatorname{Var} \Theta$, if $\langle B ; \Delta\rangle$ and $\langle\mathbb{N} ; \Theta\rangle$ are vector (n, m) presentations.

Thus, and by the notation given in the introduction part, given a vector (n, m) semigroup presentation $\langle B ; \Delta ; \Theta\rangle$ in $\operatorname{Var} \Theta$ we can also denote it as $\left\langle B ; \Lambda ; \Theta^{\prime}\right\rangle$, where:
$\Lambda \subseteq B^{+} \times B^{+}$and $\Delta=\Lambda_{\#}$;
$\Theta^{\prime} \subseteq \mathbb{N}^{+} \times \mathbb{N}^{+}$and $\Theta=\Theta_{\#}^{\prime}$.
Given $\left\langle B ; \Lambda ; \Theta^{\prime}\right\rangle$, the set of vector (n, m) identities $\Theta^{\prime} \subseteq \mathbb{N}^{+} \times \mathbb{N}^{+}$induces a set $\Theta^{\prime}(B) \subseteq B^{+} \times \bar{B}^{+}$defined by:
$\left(a_{1}^{p}, c_{1}^{q}\right) \in \Theta^{\prime}(B)$ if there exist $\left(i_{1}^{p}, j_{1}^{q}\right) \in \Theta^{\prime}$ and a sequence $b_{1}, b_{2}, \ldots \in B$ such that

$$
a_{\mu}=b_{i_{\mu}}, \mu \in \mathbb{N}_{p} \text { and } c_{v}=b_{j_{v}}, v \in \mathbb{N}_{q}
$$

In other words,

$$
\begin{aligned}
& \Theta^{\prime}(B)=\left\{\left(b_{i_{1}} \ldots b_{i_{p}}, b_{j_{1}} \ldots b_{j_{q}}\right) \mid\right. \\
& \left.\left(i_{1}^{p}, j_{1}^{q}\right) \in \Theta^{\prime}, b^{t} \in B^{t}, t=\max _{\mu, v}\left\{i_{\mu}, j_{v}\right\}\right\} .
\end{aligned}
$$

Now, $\Lambda \cup \Theta^{\prime}(B) \subseteq B^{+} \times B^{+}$is a set of vector (n, m)-relations on B, and thus $\left\langle B ; \Lambda \cup \Theta^{\prime}(B)\right\rangle$ is a vector (n, m)-presentation of an (n, m)-semigroup. But, $\left\langle B ; \Lambda \cup \Theta^{\prime}(B)\right\rangle$ is not in $\operatorname{Var} \Theta_{\#}^{\prime}$ in general case.

Example 2.1. Let $n=3, m=2$, $B=\{a, b\}, \Lambda=\emptyset$, and let Θ^{\prime} be a set of $(3,2)$-identities defined by:
$\Theta^{\prime}=\left\{\left(l^{3}, l^{2}\right)\right\}$ for some $l \in \mathbb{N}$, i.e.

$$
\begin{aligned}
\Theta_{\#}^{\prime} & =\{((1, l l l),(1, l l)),((2, l l l),(2, l l))\} \\
& =\{((1, l l l), l),((2, l l l), l)\}
\end{aligned}
$$

We have that $\left\langle a, b ; \Theta^{\prime}\right\rangle=\left\langle a, b ; \Theta_{\#}^{\prime}\right\rangle$ is a (3,2)-semigroup presentation in $\operatorname{Var} \Theta_{\#}^{\prime}$. Moreover, the $(3,2)$-semigroup $\left\langle a, b ; \Theta_{\#}^{\prime}\right\rangle=$ $\boldsymbol{F}(\boldsymbol{a}, \boldsymbol{b}) / \overline{\Theta_{\#}^{\prime}(F(a, b))}$ is a free object in $\operatorname{Var} \Theta_{\#}^{\prime}$ with basis $\{a, b\}$. On the other hand, the $(3,2)$-semigroup presentation $\left\langle B ; \Theta^{\prime}(B)\right\rangle=\left\langle a, b ; \Theta^{\prime}(a, b)\right\rangle$ represents the $(3,2)$-semigroup $\boldsymbol{F}(\boldsymbol{a}, \boldsymbol{b}) / \overline{\left(\Theta^{\prime}(a, b)\right)_{\#}}$. It is easy to see that $\left(\Theta^{\prime}(a, b)\right)_{\#} \subseteq \Theta_{\#}^{\prime}(F(a, b))$ and thus $\overline{\left(\Theta^{\prime}(a, b)\right)_{\#}} \subseteq \overline{\Theta_{\#}^{\prime}(F(a, b))}$. Consequently, if two elements are equal in $\left\langle a, b ; \Theta^{\prime}(a, b)\right\rangle$, they are equal in $\left\langle a, b ; \Theta^{\prime}\right\rangle$ as well, The opposite is not true. For example, $(2,(1, a b a)(1, a b a)(1, a b a))=(1, a b a)$ in $\left\langle a, b ; \Theta^{\prime}\right\rangle$ but $(2,(1, a b a)(1, a b a)(1, a b a)) \neq$ (1, aba) in $\left\langle a, b ; \Theta^{\prime}(a, b)\right\rangle$. We conclude that $\left\langle a, b ; \Theta^{\prime}(a, b)\right\rangle \notin \operatorname{Var} \Theta_{\#}^{\prime}$.

Proposition 2.2

$\left\langle B ; \Lambda ; \Theta^{\prime}\right\rangle \equiv\left\langle B ; \Lambda \cup \Theta^{\prime}(B)\right\rangle$ if and only if $\left\langle B ; \Lambda \cup \Theta^{\prime}(B)\right\rangle \in \operatorname{Var} \Theta_{\#}^{\prime}$.

Proof. (\Rightarrow). Straightforward.
(\Leftarrow). It is easy to notice that

$$
\left(\Lambda_{\#} \cup \Theta^{\prime}(B)_{\#}\right) \subseteq\left(\Lambda_{\#} \cup \Theta_{\#}^{\prime}(F(B))\right)
$$

and thus $\overline{\Lambda_{\#} \cup \Theta^{\prime}(B)_{\#}} \subseteq \overline{\Lambda_{\#} \cup \Theta_{\#}^{\prime}(F(B))}$.
Since $\boldsymbol{F}(\boldsymbol{B}) / \overline{\Lambda_{\#} \cup \Theta^{\prime}(B)_{\#}} \in \operatorname{Var} \Theta_{\#}^{\prime}$, it follows that for $i \in \mathbb{N}_{m}$, for an (n, m)-identity $\left(i_{1}^{p^{\prime}}, j_{1}^{q^{\prime}}\right) \in \Theta^{\prime}$, and for a sequence u_{1}^{t} from $F(B)$, where $t=\max _{\mu, v}\left\{i_{\mu}, j_{v}\right\}$:

$$
\begin{aligned}
& f_{i}\left(u_{i_{1}}^{\overline{\Lambda_{\#} \cup \Theta^{\prime}(B)_{\#}}} \ldots u_{i_{p^{\prime}}}^{\overline{\Lambda_{\#} \cup \Theta^{\prime}(B)_{\#}}}\right)= \\
& f_{i}\left(u_{j_{1}}^{\overline{\Lambda_{\#} \cup \Theta^{\prime}(B)_{\#}}} \ldots u_{j_{q^{\prime}}}^{\overline{\Lambda_{\#} \cup \Theta^{\prime}(B)_{\#}}}\right) \\
& \text { i.e. }\left(f_{i}\left(u_{i_{1}} \ldots u_{i_{p^{\prime}}}\right)\right)^{\overline{\Lambda_{\#} \cup^{\prime}(B)_{\#}}}= \\
& \left(f_{i}\left(u_{j_{1}} \ldots u_{j_{q^{\prime}}}\right)\right)^{\frac{\Lambda_{\#} \cup \Theta^{\prime}(B)_{\#}}{}}=
\end{aligned}
$$

This implies that

$$
\left(\left(i, u_{i_{1}}^{i^{\prime}}\right),\left(i, u_{j_{1}}^{j_{q^{\prime}}}\right)\right) \in \overline{\Lambda_{\#} \cup \Theta^{\prime}(B)_{\#}}
$$

and thus

$$
\Theta_{\#}^{\prime}(F(B)) \subseteq \overline{\Lambda_{\#} \cup \Theta^{\prime}(B)_{\#}}
$$

Consequently,

$$
\Lambda_{\#} \cup \Theta_{\#}^{\prime}(F(B)) \subseteq \overline{\Lambda_{\#} \cup \Theta^{\prime}(B)_{\#}}
$$

and moreover,

$$
\overline{\Lambda_{\#} \cup \Theta_{\#}^{\prime}(F(B))} \subseteq \overline{\Lambda_{\#} \cup \Theta^{\prime}(B)_{\#}}
$$

Hence, $\left\langle B ; \Lambda ; \Theta^{\prime}\right\rangle \equiv\left\langle B ; \Lambda \cup \Theta^{\prime}(B)\right\rangle$.
Consider now, vector (n, m)-presentations of type $\left\langle B ; \Lambda \cup \Theta^{\prime}(B)\right\rangle$.

Since $\left\langle B ; \Lambda \cup \Theta^{\prime}(B)\right\rangle$ is a vector (n, m) presentation of an (n, m)-semigroup, it induces a corresponding binary semigroup presentation, for which we can apply Theorem 4.1, Theorem 4.2, Theorem 4.3, Theorem 4.4 from [10]. As a consequence, and providing that Proposition 2.2 is satisfied, we would get good combinatorial descriptions for $\left\langle B ; \Lambda ; \Theta^{\prime}\right\rangle$, that are objects in $\operatorname{Var} \Theta_{\#}^{\prime}$. Moreover, we would have word problem solvability for those vector (n, m)-semigroup presentations in such varieties.

REFERENCES

[1] Gj. Čupona, Vector valued semigroups, Semigroup Forum, 26 (1983), pp. 65-74.
[2] Gj. Čupona, N. Celakoski, S. Markovski, D. Dimovski, Vector valued groupods, semigroups and groups, Vector valued semigroups and groups, Maced. Acad. of Sci. and Arts, Skopje, (1988), pp. 1-79.
[3] Gj. Cupona, S. Markovski, D. Dimovski, B. Janeva, Introduction to the combinatorial theory of vector valued semigroups, Vector valued
semigroups and groups, Maced. Acad. of Sci. and Arts, Skopje, (1988), pp. 141-184.
[4] D. Dimovski, Free vector valued semigroups, Proc. Conf. Algebra and Logic, Cetinje, (1986), pp. 55-62.
[5] D. Dimovski, Gj. Čupona, Injective vector valued semigroups, Proc. VIII Int. Conf. Algebra and Logic, Novi Sad J. Math., 29 (2) (1999), pp. 149-161.
[6] D. Dimovski, B. Janeva, S. Ilić, Free (n, m)groups, Communications in Algebra, 19 (3) (1991), pp. 965-979.
[7] D. Dimovski, I. Stojmenovska, Reductions for vector (n, m)-presentations of (n, m) semigroups, Semigroup Forum, 86 (3) (2013), pp. 663-679.
[8] I. Stojmenovska, D. Dimovski, On varieties of (n, m)-semigroups, International Journal of Algebra, 6 (15) (2012), pp. 705-712.
[9] I. Stojmenovska, D. Dimovski, On vector varieties of (n, m)-semigroups, International Journal of Algebra, 12 (7) (2018), pp. 273-283.
[10] I. Stojmenovska, D. Dimovski, On reductions for presentations of vector valued semigroups: overview and open problems. To appear in this vollume.

ЗА ЕДНА КЛАСА ПРЕТСТАВУВАЊА ВО МНОГУОБРАЗИЈА ВЕКТОРСКО ВРЕДНОСНИ ПОЛУГРУПИ

Ирена Стојменовска

Универзитет Американ Колеџ, Скопје, Република Македонија
Во спомен на професор Ѓорѓи Чупона, со длабока почит и огромна благодарност
Дефинираме специјална класа векторски (n, m)-претставувања во векторски многуобразија (n, m)-полугрупи, каде аплицираме претходно добиени резултати за постоење на ефективни редукции, под одредени услови. Како последица, се добиваат добри комбинаторни описи на разгледуваните објекти.

Клучни зборови: (n, m)-полугрупа, (n, m)-претставување, (n, m)-многуобразие, редукција

