VISUALISATION OF MICROGLIA WITH THE USE OF IMMUNOHISTOCHEMICAL DOUBLE STAINING METHOD FOR CD-68 AND Iba-1 OF CEREBRAL TISSUE SAMPLES IN CASES OF BRAIN CONTUSIONS

Aleksandar Stankov¹, Viktorija Belakaposka-Srpanova¹, Natasa Bitoljanu¹, Ljupco Cakar¹, Zdravko Cakar¹, Gorazd Rosoklija²,³, ⁴

¹ Institute for forensic medicine, criminalistic and medical deontology, Medical faculty Skopje, R. Macedonia
² Department of Psychiatry, Columbia University, New York, NY, USA
³ Division of Molecular Imaging and Neuropathology and New York State Psychiatric Institute, New York, NY, USA
⁴ Macedonian Academy of Sciences & Arts, Skopje, R. Macedonia

Abstract
In the recent years it has been confirmed that the main component of the immune response in an injury of the nerve cell comes from microglia and macrophages. The main challenge in the field of microglia research is to detect the different stages of cellular activation by visualization of the cell morphology. The existing visualization techniques are based on surface molecules expression in resting and activated microglia cells. For visualization of the microglial cells and their functional state we used double labeling method for cd-68 and iba1 in brain contusions with different survival time. Microglia are stained brown with Iba-1, whereas microglia impregnated with black, grainy color, represents activated microglia stained with CD 68. We had significantly positive results, and we were able to observe changes in the morphology of the microglia that correlated with the survival time. Using double labeling with Iba-1 and cd68 we were able to determine their physiological state based on the morphology and immunoreactivity.

Key words: microglia cells, immunohistochemistry, brain contusions

Introduction
In the last years it has been confirmed that the main component of the immune response in an injury of the nerve cell comes from the microglia and the macrophages [1]. The microglia term was introduced in the 1920 by the Spanish neuroscientist Pio del Rio Hortega, who performed the first detailed microscopic analysis of these newly discovered cells [2–4]. The original findings of these cells were vague, because of the lack of interest for their study. Microglia constitutes 5–20% of the total number of glia cells in the CNS [5]. Microglia are ontogenetically related with the monocytic cell lineage and they inhabit the CNS during its fetal development [6, 7]. During the embryogenesis the hematopoietic monocytes inhabit the CNS, the cerebrospinal fluid, and the perivascular spaces in order to mature along with the cerebral tissue into typical branched resident microglia [8].

In a normal physiological state, microglia are described as cells with small cellular body and numerous long branching processes. They are very motile cells distributed throughout the cerebral tissue, constantly surveying the tissue homeostasis [9]. They respond quickly and dramatically to any pathological noxa and are
ponsible for the cleanup of dead tissue and toxic substances in order to establish tissue homeostasis in the CNS [10].

The main challenge in the field of microglia research is to detect the different states of cellular activation by visualization of cell morphology. The existing visualization techniques are based on surface molecules expression in resting and activated microglia cells. The expression of these molecules is constant, regardless the cellular state, however the regulation of their expression is different depending on the phase of activation of the cell it is in [11].

Ionized calcium binding adaptor molecule 1 [Iba1] is a 17 – kDa EF–hand protein whose expression is restricted to microglia/macrophages [12]. Expression of Iba1 is up-regulated in activated microglia following facial nerve axotomy [13], ischemia [14], and several brain diseases [15, 16], thereby implicating it in the activated phenotypes of microglia. Iba1 shares active locus with F – actin [filamentous actin] on membrane ruffles induced by macrophage colony – stimulating factor [M-CSF] and in phagocytic cups formed during zymosan uptake by microglia [17]. It is the key molecule in membrane ruffling and phagocytosis in to be involved in the signaling pathways of calcium and Rho family small GTPase, Rac [17], which is the essential molecule in regulating actin reorganization in membrane ruffling [18–20].

The CD68 molecule is a 110 kD intracellular glycoprotein primarily associated with cytoplasmic granules and to a lesser extent the membranes of macrophages. The markers to the CD68 antigen are most frequently used for the identification of macrophages in immunohistochemistry. However, CD68 is also found in monocytes, neutrophils, basophils and large lymphocytes. The lysosomal protein CD68 can be used for microglial staining [21, 22]. High levels of CD68 expression are associated with macrophages and activated microglia, whilst low levels of expression are associated with resting, ramified microglia [21–23].

Materials and methods

We stained contusions of the cerebral cortex incurred by blunt force trauma in cases with no more than 30 min survival time, no more than 12 hours survival time, and with survival time of 96 hours, survival time of 144 hours, and survival time of 648 hours. We also stained control tissues without cerebral trauma obtained from subjects where the cause of death is not related to trauma or disease of the CNS. The research will not include cases with post-mortem interval longer than 24 hours and cases where the cerebral injury is incurred with the use of firearms or with the use of sharp force [incising or stabbing]. The cerebral tissue we received from the autopsies performed at the Institute for Forensic Medicine, Criminalistics, and Medical Deontology, School of Medicine, University Ss. Cyril and Methodius, Skopje, R. Macedonia. Brains were processed after a signed consent from the next of keen of the deceased. The research was approved by the Ethics committee of the School of Medicine, Skopje.

The immunohistochemical staining was performed on a short time fixed human tissue with the use of ABC [Avidin Biotin Complex] method and double labeling for CD-68 [KP 1, Dako] with Nickel sulphat and for Iba-1 [Vako] with DAB [Diaminobenzidine] [24]. Iba-1 appeared brown, and CD 68 appeared black. Microglia are defined with Iba1 staining, whereas the microglia that was with black, grainy coloration, showed immunoreactivity for CD 68, and was differentiated as activated microglia. The 40 micron thick tissue slices were dehydrated at 60°C, deparaffinized and rehydrated in a series of xylene and graded ethanol [100%, 95%, 75%, 50%, distilled water]. Following rinsing in ddH2O and blocking of endogenous peroxidase with 0,3% H2O2, heat induced epitope retrieval was applied. The sections were submerged in Tris/EDTA and heated in a microwave at 100% power. The permeabilization was facilitated with tissue exposure to buffer with 0,3% Triton x 100. The sections were blocked in 3% normal horse serum [NHS], or a serum from the species used for the preparation of the secondary biotinylated antibody, for 30 minutes. The primary antibody, CD 68 1 : 500 in a buffer with 3% normal serum, was applied during 24 hours, at +4°C on a tissue culture shaker platform, so that the tissue was constantly exposed to fresh antibodies. After rinsing, the tissue was incubated for one hour at room temperature with a biotinylated secondary antibody directed towards the species in which the primary antibody was prepared, in a concentration of 1 : 200. The Avidin Biotin Complex was applied in 1 : 100 dilution at room temperature, for
one hour. After washing followed visualization with DAB and Nickel. The stained tissue was washed and the staining procedure was repeated with the application of Iba 1 in a concentration of 1 : 2000, for 24 hours. After the washing, the immunohistochemical reaction was visualized using 3,3′-diaminobenzidine [DAB] without Nickel, the sections were dehydrated through graded ethanol, cleared in xylene, and cover slipped using "Permaunt" mounting medium.

The detection of the morphological changes of the identified microglia was performed on photography of the stained microscopic slides made on Leica 5000MB microscope using 60 x oil lens and Visiopharm software.

Results

Iba 1 is a protein whose expression is strictly bound to microglia and macrophages [12]. In our study staining with this antibody fully confirmed the results of the previous studies. The expression of this antigen (light brown–brown) was excellent in all of the stained sections. The cellular body and the processes were clearly defined from the surrounding. Using double staining, (Iba-1 and CD-68) we managed to detect microglia in which there is activation. In those cells, the intensity of the reaction of antibody – cd68 protein increased depending on the time interval. The control cases (Fig. 1) and the cases with survival time of less than 24 hours (Fig. 2), the intensity of cd68 staining was minimal, visible as few black granules in the cell. Unlike them the intensity of staining in cases with longer survival time was drastically different and the cells were completely stained with the CD-68 (Fig. 3, 4).

Discussion

Immunohistochemistry is a technique based on the antigen – antibody reaction, that is detecting expression of a certain protein in the
cell by using specific antibody. The use of immunohistochemistry for detection and determination of the functional stadium of microglia is widespread. Microglia show great antigenic heterogeneity [25–30]. The cells of the monocytic lineage show expression of the Iba-1 protein. Some of the preliminary studies proved that the spleen macrophages and Kupffer cells showed positive Iba-1 staining. These findings showed that Iba-1 staining can be used for identification of cells from the monocyt-macrophages lineage including the microglia [31]. Numerous studies showed that the lysosomal cd68 protein can be used for microglial staining [21, 22]. Wherein the strong expression of this protein is associated with the activated microglia and macrophages, and the low expression is generally associated with resting microglia [21–23]. Using previous experiences associated with immunohistochemical staining with the use of antibodies for determination of the Iba-1 and cd68 proteins we used double staining of cerebral tissue from individuals with brain contusions and individuals with no traumatic or pathological injury of the brain. With the use of double staining method with Iba-1 and cd68 we managed to determine their physiological state based on their morphology and based on the expression of the cd68 protein.

REFERENCES

2. Results

In the last years it has been confirmed that the main component of the immune response at nerve cell damage is microglia and macrophages. The main challenge in microglial studies is to determine the different stages of the cell activation with visualization of their morphological changes. The existing techniques are based on the expression of surface molecules in quiescent and active microglia cells. In our research we used the method of double staining for CD68 and Iba-1 on long-term fixed brain tissue. The experimental procedures were taken from individuals who had undergone seizures on different time periods. With the help of this immunohistochemical method we managed to visualize the microglia cells based on their morphology and the expression of CD68 antigen that indicates their physiological condition which changes in dependency of the period of survival.

Keywords: microglia cells, immunohistochemistry, brain seizures.

2. Резиме

Визуализация на микроглија с користење на имунохистохемизираниот метод за CD68 и Iba-1 на клетките на микроглија во продължение на нервните клетки до ја од микроглија клетките и м кроф гите. Л вниот предизвик во микроглија лните истр жув њ е се детерминират различните ст диуми и клеточн т клаб вци со визуелизи циј н и нивн т морфологија. Осточките техники з визуелиз пц циј се б - зир и експресиј т и површинските молекули к ј мирув чдите и ктивир ните микроглија клетки. О н ќето истр жув њ з визуелизи циј н микроглија клетките користевме метод и двојно боене з -68 и -1 н кр ткотр жино фиксир но мозочно ткиво. Римороците бе земени од поединци к ј кои постоја и гмечуњ н и кор т од мозокот и кои се со р злично време н преживување. О потреб в имунохистохемиски метод успевме д ги визуелизирме микроглија клетките и врз основ н и нивн т морфологиј и експресија т н 68 нативните д ј одредиме нивн т физиолошк с со стојб кој се менув ше во з висност од времето н преживување ње.