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Electromagnetic analysis of horizontal wire in two-layered soil
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Abstract

Simulation of grounding systems at high frequencies is of interest in electromagnetic compatibility, especially
related to lightning, and in emerging technologies, such as power line telecommunications. This paper presents
5rst results in the e6ort to extend the electromagnetic 5eld theory based modeling of grounding systems to
a two-layer model of earth. A rigorous mathematical model which solution involves numerical solution of
Sommerfeld-type integrals is described. Also new more approximate but computationally more e8cient solution
based on quasi-static image theory is introduced. Comparison between these two solutions led to conclusion
related to the applicability of the image theory approach, which may be of interest for practical problems.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Simulation of grounding systems at high frequencies is of interest in electromagnetic compatibility
studies, especially in relation to lightning [17]. Grounding systems are usually modeled by a cir-
cuit theory approach, based on quasi-static approximation [14], which imposes limit of application
to lower frequencies, typically below 1 MHz [16,13]. Since many lightning related studies require
analysis in frequency ranges up to few MHz, and some emerging technologies, such as power
line communications, up to few tens of MHz [18], there is a need for more accurate modeling in
MHz range. Grounding systems and connected structures often obey thin wire approximation, which
enables e8cient use of method of moment computational techniques [10]. Application of these pow-
erful modeling methods led to the most accurate modeling of grounding systems at high frequencies
[7–9]. A special problem in modeling of grounding systems is modeling of the surrounding soil.
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Although the earth is inherently nonhomogeneous it is often represented by a homogeneous model
with some estimated apparent constants of resistivity and permittivity (permeability of air is usually
applied) [15]. However, recently methods for estimating an equivalent two-layer earth models have
been established [4] leading to signi5cant advancement in grounding systems modeling [19]. So far
this advancement in the modeling was limited to the low-frequency case.

This paper presents 5rst results in the e6ort to extend the electromagnetic 5eld theory based
modeling of grounding systems to a two-layer model of earth. Furthermore, since the solution of the
exact mathematical model involve intense computations that usually require large computer resources,
this solution is compared with a more approximate but more computationally e8cient solution, based
on the image theory, that may be of more interest in practical applications. In relation to this, new
formula for application of quasi-static image theory in grounding system analysis is introduced.
Analysis in this paper is limited to horizontal grounding electrodes.

2. The mathematical model of the grounding system

The electromagnetic full-wave model developed for analysis of grounding systems in homogeneous
earth [7–9] was based on rigorous formulations derived from the full set of the Maxwell’s equations,
on the theoretical background of antenna analysis [3]. The solution was based on the exact solution
of 5elds due to electrical dipole in or near lossy half-space [1]. We follow the similar idea to extend
the analysis to two-layer earth model. We apply the exact model for layered media developed in
antenna theory [11,12,5]. Here, for completeness, only short account of the development of the
mathematical model is given, while the important modi5cations of the solution of the mathematical
model, required for grounding system analysis, are given in Section 3.

The model is based on the following assumptions: (1) The earth and the air occupy half-spaces
with a common horizontal plane boundary between them, where the earth consists of two layers one
with 5nite and the other with in5nite depth separated with a plane boundary parallel to the earth–
air interface. (2) The earth and the grounding electrodes exhibit linear and isotropic characteristics:
conductivity, permittivity and permeability. (3) The grounding system is modeled as network of
horizontal cylindrical metallic conductors, which are assumed to be subject to the thin-wire approxi-
mation, i.e., the ratio of the length of the conductor segment to its radius is �1. (4) The energizing
of the grounding system is by injection of current at an end point of one of the conductors.

An idealized two-layered soil model, which is used for this theoretical development, is shown in
Fig. 1. It consists of an upper layer (medium 1) of 5nite depth d1 which is characterized by relative
permittivity �r1, permeability �0 and conductivity �1; and a lower layer of in5nite depth (medium
2) which is characterized by relative permittivity �r2, permeability �0 and conductivity �2. The air
(medium 3) is characterized by permittivity �0, permeability �0 and zero conductivity.

We use the mixed-potential integral equation (MPIE) [11] as a basis of the mathematical model.
Based on usual method of moment techniques, we consider the grounding system divided in a
number of 5ctitious segments. A point at the source segment is de5ned by a vector r̃′ = (x′; y′; z′),
and the position of the observer (testing) segment is de5ned by a vector r̃ = (x; y; z) (both segments
are arbitrarily positioned on the x − y plane). In MPIE formulation, the electric 5eld vector Ẽ(̃r)
is expressed in terms of magnetic vector potential Ã(̃r) and electric scalar potential (̃r), due to
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Fig. 1. A two-layer soil model and the coordinate system used in the analysis.

current I(r̃′) and charge q(r̃′) along the source segment axis ‘n, respectively:

Ẽ(̃r) = −∇(̃r) − —!Ã(̃r) (1)

which could be represented in integral form by

(̃r) =
∫
‘n

G(̃r|r̃′)q(r̃′) d‘′; Ã(̃r) =
∫
‘n

GA(̃r|r̃′) · Ĩ(r̃′) d‘′: (2)

Here, GA is dyadic Green’s function of the magnetic vector potential and G is the scalar potential
Green’s function. The expressions for the Green’s functions due to a horizontal electric dipole in the
upper layer are adequately derived in the spectral domain 5rstly following the general form of the
spectral domain Green’s functions for microstrip geometry [5] used in the analysis of printed anten-
nas. The spectral domain Green’s functions for the source in the upper layer show the z-dependence
of the 5elds in the source region, which can be written as a sum of the direct term and up- and
down-going waves due to reHections from the interfaces z = −d1 and 0, respectively:

G̃A
xx = �0

[
G̃dir +

Ahe jkz1(z−z′)

jkz1
+
Che−jkz1(z−z′)

jkz1

]
; (3)

G̃A
zx = j�0

[
kx
k2
�

(Ah + Bh)ejkz1(z−z′) +
kx
k2
�

(Dh − Ch)e−jkz1(z−z′)

]
; (4)

G̃ =
1
n2

1

[
G̃dir +

k2
z1Bh + k2

1Ah

k2
� jkz1

e jkz1(z−z′) +
k2

1Ch − k2
z1Dh

k2
� jkz1

e−jkz1(z−z′)

]
; (5)

where, G̃dir =e−jkz1|z+z′|=jkz1, where n2
1 =�r1−j�1=(!�0) and n2

2 =�r2−j�2=(!�0) are complex dielectric
constants of the ground layers, and k2

i =!2�0n2
i are propagation constants. The up- and down-going

waves are represented by terms Ah, Bh, Ch and Dh:

Ah =
e−jkz1|z′|R10

TE

[
e−jkz1|z′|) + R12

TEe−jkz1(2d1−|z′|)]
1 − R12

TER
10
TEe−jkz12d1

; (6)
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Bh =
e−jkz1|z′|R10

TM

[
e−jkz1|z′|) − R12

TMe−jkz1(2d1−|z′|)]
1 − R12

TMR
10
TMe−jkz12d1

; (7)

Ch =
e−jkz1(d1−|z′|)R12

TE

[
e−jkz1(d1−|z′|) + R10

TEe−jkz1(d+|z′|)]
1 − R12

TER
10
TEe−jkz12d1

; (8)

Dh =
e−jkz1(d1−|z′|)R12

TM

[−e−jkz1(d1−|z′|) + R10
TMe−jkz1(d1+|z′|)]

1 − R12
TMR

10
TMe−jkz12d1

(9)

which are functions of generalized reHection coe8cients RTM and RTE

R10
TE =

kz1 − kz0
kz1 + kz0

; R12
TE =

kz1 − kz2
kz1 + kz2

; (10)

R10
TM =

kz1 − n2
1kz0

kz1 + n2
1kz0

; R12
TM =

n2
2kz1 − n2

1kz2
n2

2kz1 + n2
1kz2

(11)

with k2
zi = k2

i − k2
� for i = 0; 1; 2; k2

� = k2
x + k2

y. The spatial domain Green’s functions are obtained by
solving Sommerfeld integrals of the following type which are integrated numerically:

GA; =
1

4�

∫ ∞

0
G̃A;(k�)J0(k��)k� dk�: (12)

3. Solution of the mathematical model of the grounding system

Since the mathematical model described in Section 2 was originally developed in antenna theory,
a number of modi5cations and extensions are necessary for its application in grounding systems
analysis. The details of the modi5cations may be found in [6] and validation by comparison with
5eld experiments in [7]. Here only short account of the main di6erences with antenna theory is
given: the de5nition of the source, evaluation of the impedance to ground, and computational e6ort
for direct numerical solution of the Sommerfed-type integrals. The main di6erence with the antenna
theory regards the de5nition of the source. In antenna theory usually the voltage source between two
closely positioned terminals is de5ned. In grounding system analysis, the injected current is usually
known and the property that characterizes the grounding system behavior is the impedance to ground.
It is de5ned as a ratio of the voltage between the feed point at the grounding system to a point
at remote neutral ground along a given path. Fig. 2 illustrates the applied solution. The source is
modeled by an ideal current source connected with the one terminal to the end point of a grounding
electrode and with the other to the ground at in5nity, while the inHuence of connecting leads is
neglected. We have applied the Galerkin solution [10] with triangular basis and test functions, in
which the derivatives of the scalar potential are in e6ect replaced by 5nite di6erences. Therefore,
the current injection is modeled by an additional ‘triangle’ at the point of injection. The current
distribution is computed as a response to an injected current IS, as a solution of the following form
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Fig. 2. A general view of an end-driven single grounding conductor with longitudinal current approximated by triangle
functions.

of the matrix equation:

[Z][I ] = [Z ′IS]; (13)

where the column matrix [I ] represents the unknown currents to be determined, [Z] is the matrix
of mutual impedances between each of current elements, [Z ′IS] is energization matrix related to the
energizating by injection of current IS, and Z ′ is impedance matrix between the segment where the
currents are injected and the other segments. Once the current distribution along the conductors is
computed, the electric 5eld at points of given pro5les can be computed by summing the contributions
due to currents in each segment. To compute the voltage between the feed point and a remote point
in earth VS, a pro5le starting from the surface of the conductor is used. This leads to the impedance
to ground formulation by

ZS =
VS

IS
=

1
IS

[I ] · [ZS] = [Z]−1 · [Z ′] · [ZS]; (14)

where [ZS] is the impedance matrix between segments and injection segment.

3.1. Speci7cs concerning numerical solution of Sommerfeld-type integrals in grounding system
analysis

In the 5eld of microwave technology the spectrum of interest is of the order GHz. The calculation
domain of interest covers the range of the far 5elds where the saddle-point method is found to be
adequate procedure for calculation of (12). For the near-5eld calculation generally it is possible to
perform analytical or approximation integration by the following simpli5cation k2

z1 ≈ k2
z0 since layers

are generally loss-less. However in the grounding system studies the frequency domain analysis of the
response to a typical lightning current impulses has to cover the frequency spectrum from 100 Hz to
100 MHz. Considering the geometry of the grounding conductors (several hundreds m), the distance
between source and observation point varies from dimensions much smaller than the wavelength
to several times of the order of the wavelength, which covers the near 5eld to intermediate 5eld
zone. For adequate procedure for solving (12) the detailed analysis of the analytical properties of
integrands is necessary. For very small distance between source and observation point (near-5eld
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range (k0�¡ 1¡k1�) it appeared that quasi-static method of images is adequately applicable. The
exact numerical integration procedure of (12) is appropriate in the cases when the distance between
source and observation point is of the order of the wavelength. The resistivity of ground varies
from 10 Mm that represents the ground as highly conductive medium, to several 10 000 Mm. The
parameters of the two-layer ground which are represented by the frequency-dependent complex
constants n2

1 and n2
2, in the low-frequency spectrum in highly conductive soil layers are characterized

by a very large imaginary part. It is often found that direct numerical evaluation of the integrals is
numerically unstable and extremely computer time consuming. Our tests of the CPU time needed
for calculation of Sommerfeld integrals have suggested that it is signi5cantely increased in case of
high conductivity of the layers.

3.2. Quasi-static image model

Looking for computationally more e8cient solution we compare the above described method with
the quasi-static method of images. It is de5ned for the scalar potential due to point current source and
its multiple images of decreasing strength. Our approach is based on [2], where the scalar potential
Green’s function in the upper layer of two-layered soil is written in the following in5nite summation
term

G =
∞∑
i=0

(V1V2)i
[

e−jk1Ri1

Ri1
+ V1

e−jk1Ri2

Ri2
+ V2

e−jk1Ri3

Ri3
+ V1V2

e−jk1Ri4

Ri4

]
; (15)

where Rij, j = 1; : : : ; 4 are distances from source and source images to the observation point, and V1

and V2 are reHection coe8cients at the lower and upper boundary, respectively [2].

4. Numerical results

As an illustrative example, we consider a two-layer soil which is characterized by relative permit-
tivity �r1; r2 = 10, and its upper layer conductivity �1 = 0:01 S=m, and the bottom layer conductivity:
(1) �2 = 0:000526 S=m, with reHection factor K = +0:9, or (2) �2 = 0:19 S=m, with reHection factor
K = −0:9, where K = (�1 − �2)=(�1 + �2). It is assumed that the upper layer height varies form:
d1 = 1:2, 2.0 and 5:0 m. The studied conductor is 100 m typical horizontal linear end-driven ground-
ing electrode with diameter of 10 cm placed at H = 1 m depth. It is energized by a time-harmonic
current generator with amplitude of 1 A.

Fig. 3 shows the longitudinal current pro5les (real and imaginary parts) when the reHection factor
is K = +0:9 and −0:9 for frequencies: (a) 1 kHz (wavelength in the upper layer &1 ≈ 710 m), (b)
10 kHz (&1 ≈ 224 m), (c) 0:1 MHz (&1 ≈ 71 m) and (d) 1:0 MHz (&1 ≈ 22 m). It is shown that the
performance of a 100 m horizontal grounding electrode placed in two-layer soil is not only function
of frequency, but is signi5cantly inHuenced by the reHection factor K and the upper layer depth
d1. It is observed that up to 1 kHz the longitudinal current distribution pro5les correspond to the
typical quasi-static pro5les. Signi5cant di6erences are observed for frequencies from 10 kHz up to
several 100 kHz. As the frequency increases, it is observed that a larger part of the injected current
is discharged through a smaller section at the beginning of a conductor. This tendency is emphasized
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Fig. 3. Current distribution along a studied 100 m horizontal grounding conductor.

Fig. 4. Comparison between exact and image model regarding longitudinal current along a 100 m horizontal grounding
conductor with respect to layer depth.

when the lower layer is much more conductive than the upper layer, especially when d1 = 1:2 m.
At frequencies over 1 MHz the current distribution pro5les are slightly inHuenced by the parameters
of a two-layer structure and approaches that of a uniform soil.
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Fig. 4 shows the comparative results of the longitudinal current along 100 m conductor when
K =−0:9 calculated by the exact model and quasi-static image method. The studied frequencies are
0.01 and 0:1 MHz. The studied cases are: (1) upper layer depth d1=2 m and wire depth H=1 m; and
(2) upper layer depth d1 = 1 m and wire depth H = 0:5 m. The results show that the image model
gives acceptable results whenever the upper layer depth is large. However signi5cant di6erences
between the exact approach and the method of images are observed when the upper layer depth is
thin.

5. Conclusion

This paper describes the mathematical model and its computational solution for an electromagnetic
analysis of grounding systems in two-layer soil. Also, new more approximate but more computa-
tionally e8cient solution is introduced by application of quasi-static image theory. The preliminary
results led to the following conclusions: (1) High-frequency behavior of horizontal conductors in
two-layer soil is signi5cantly a6ected by the parameters of both layers, especially when the up-
per layer is thin and the conductor dimensions are large. (2) For higher frequency spectrum (over
1 MHz), the e6ects of a two-layer soil structure are approaching that of a uniform soil since the
upper layer depth becomes large in comparison to the wavelength. (3) The results show that the
quasi-static image model may be used in practical lightning studies for impulses with lower fre-
quency content. The conditions should depend on the parameters of both layers, and the dimensions
of the grounding system. (4) Larger di6erences between the exact and the quasi-static image model
has been experienced when: (a) the upper layer is very thin, (b) the conductor length is of the same
order of the upper layer wavelength (optionally &1=3 ∼ 3&1), (c) the reHection factor is negative
or positive and approaches ±1. (5) The model is also applicable for analysis of more complex
grounding system geometry.
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