RENAL DYSPLASIA IN BARDET-BIEDEL SYNDROME

Nadica Ristoska Bojkovska¹, Lidvana Spahić², Aleksandra Janchevska¹, Zoran S. Gucev¹, Velibor Tasic¹

¹ University Clinic for Children's Diseases, Medical Faculty, Ss. Cyril and Methodius University, Skopje, R. Macedonia
² Pediatric Clinic, Clinical Center Prishtina, Kosovo

Corresponding Author: Nadica Ristoska Bojkovska, Sv.Kliment Ohridski 54 1/3 1000 Skopje, R. Macedonia; Tel: +389 70 80 77 36; E-mail: nadicarbojk@yahoo.com

Abstract

Background: Bardet-Biedl syndrome (BBS) is a multisystem genetic disorder characterized with central obesity, pigmentary retinopathy, polydactyly, mental retardation, and hypogenitalism. Renal abnormalities have been recognized as a cardinal feature of the disease with serious prognostic implication. The aim of this study was to analyze the renal status in children with BBS and to implement appropriate interventions in those with progressive course.

Patients and methods: The diagnosis of BBS was established on the basis of criteria proposed by Beales et al. (J Med Genet 1999). Imaging of the kidneys and urinary tract was performed with ultrasound study, Tc99⁹⁰DMSA scan and a cystographic study. Twenty four hour urine collections were obtained for estimation of proteinuria and creatinine clearance. Blood pressure was monitored at clinical visits or as 24-hour ambulatory monitoring.

Results: There were 4 children (2 males, 2 females). All four children displayed abnormal kidney ultrasound and Tc99⁹⁰DMSA scan resembling dysplastic kidney(s). Two of them had overt proteinuria (glomerulo-tubular pattern). Three children had normal blood pressure and glomerular filtration rate (GFR): 107, 145 and 95 ml/min/1.73 m², and the fourth had hypertension and progressive worsening of the GFR at 65 ml/min/1.73 m². Conclusion: Children with BBS should undergo imaging studies of the kidneys and urinary tract at initial work up; in those with renal dysplasia proteinuria, GFR and blood pressure should be regularly monitored to slow down progression to terminal renal failure.

Key words: Bardet Biedl syndrome, renal dysplasia, chronic kidney disease, proteinuria, hypertension.

Introduction

Congenital anomalies of the kidneys and urinary tract (CAKUT) are significant cause of end stage renal disease (ESRD) in children and adolescents [1]. In a substantial cohort of patients CAKUT may be associated with less or more significant extra renal abnormalities. Bardet-Biedl syndrome (BBS) is ciliopathy – a multisystem genetic disorder characterized with central obesity, pigmentary retinopathy, polydactyly, mental retardation, and hypogenitalism [2–6]. Recently, renal abnormalities have been recognized as a cardinal feature of the disease with serious prognostic implication. There is great genetic heterogeneity of the syndrome; so far 18 genes have been related to the pathogenesis of the BBS [7]. The sixteenth BBS locus (BBS16) was reported by Schaefer et al [8]. Interestingly, the carriers of this mutant gene presented with absence of polidyctaly and fully penetrant association with early kidney failure. Therefore nephrologists should be familiar with this syndrome and its renal manifestations in order to diagnose nephropathy and implement appropriate therapeutic measures to prevent/retard progression to ESRD. In this work
we present the renal phenotype in a series of 4 Bardet Biedl patients who were evaluated at the Nephrology Service at the University Children’s Hospital Skopje, for presence of CAKUT.

Patients and methods
The diagnosis of Bardet Biedl syndrome was established on the basis following clinical criteria:

The presence of four primary features or three primary features plus two secondary features [9]. The primary criteria are: (i) rod-cone dystrophy (ii) polydactyly (iii) obesity (iv) learning disabilities (v) hypogonadism in males and (vi) renal anomalies. The secondary criteria are: (i) speech disorder/delay (ii) strabismus/cataracts/astigmatism (iii) brachydactyly/syndactyly (iv) developmental delay (v) polyuria/polydipsia (nephrogenic diabetes insipidus (vi) ataxia/poor coordination/imbalance (vii) mild spasticity (especially lower limbs) (viii) diabetes mellitus (ix) dental crowding/ hypodontia/small roots/high arched palate (x) left ventricular hypertrophy/congenital heart disease and (xi) hepatic fibrosis.

In this work we present four Bardet Biedl patients who were evaluated at the Nephrology Service at the University Children’s Hospital, Skopje, Macedonia in the period January 1st 2000-December 31st 2011 for the presence of CAKUT. This is the unique tertiary pediatric institution in Republic of Macedonia in which all children with syndromatic CAKUT are evaluated. Careful clinical examination was performed by two clinical geneticists/dysmorphologists (A.J. and Z.G) and all 4 children met the mandatory diagnostic criteria for BBS. The initial imaging study was ultrasound evaluation of the kidneys and urinary tract with emphasis on the echogenicity of the renal parenchyma, focal and global renal scarring, presence of hydronephrosis, and cysts.

If any of above mentioned abnormality was detected the patients underwent Tc99mDMSA study and voiding urethrocystography.

Blood pressure was measured at the clinical visits and with 24 hour ambulatory monitoring. Standard biochemistry included hematology parameters, complete urinalysis, blood glucose levels, urea, creatinine, uric acid, electrolytes, lipid profile and liver enzymes. Twenty four hour urine collections were obtained for estimation of proteinuria (normal < 150 mg/d) and creatinine clearance (normal > 90 ml/min/1.73m²) using Schwartz formula.

Results
During the period January 1st 2000-December 31st 2011 four children were diagnosed as BBS accordind to the diagnostic criteria. There were two males and two females. Their clinical features are given in Table one. All children had central obesity with body mass index ranging from 32.4 to 40.3 kg/m². Three children had congenital cardiopathies and one (with ventricular septal defect) underwent surgery. Three children also underwent surgery for polydactyly. All had visual problems and learning difficulties. Ultrasound examination showed abnormal pattern in all four children and they underwent further imaging studies. Patient No. 1 and 2 showed bilateral dysplastic kidneys with increased echogenicity of the parenchyma, loss of corticomedular differentiation and irregular contour of the kidneys (Figure 1). Patient No 3 and 4 showed focal renal scarring (Figure 2). Voiding cystography did not show reflux neither other pathology in all four children.

Table 1

| Patient | Age | Gender | Retinopathy | Polydactyly | Obesity | Learning disabilities | Hypogonadism | Renal status | other
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Bill. dysplasia</td>
<td>VSD, speech delay</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Bill. dysplasia</td>
<td>VSD, speech delay</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NA</td>
<td>Focal scarring</td>
<td>ASD</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NA</td>
<td>Focal scarring</td>
<td>VSD, strabimus</td>
</tr>
</tbody>
</table>

VSD – ventricular septal defect; ASD – atrial septal defect, NA – not applicable, * Age at diagnosis
Renal dysplasia in Bardet-Biedl syndrome

We found that three children (patients No 2, 3 and 4) had normal GFR at 107, 145 and 95 ml/min/1.73m² respectively, and the fourth (patient No 1) had progressive worsening of the GFR from 88 to 58 ml/min/1.73m². Two patients showed proteinuria 435 and 790 mg/day, mixed glomero-tubular pattern according to sodium-dodecyl sulphate polyacrylamide gel electrophoresis. Patient No 1 had hypertension which was poorly controlled due to noncompliance to treatment. This patient had several strong factors for progression of his chronic kidney disease at the last follow up at the age of 18 years: hypertension, smoking, obesity, sedentary life style, lack of physical activity, glucose intolerance and abnormal lipid profile.

Discussion

Beales el reported a series of 109 BBS patients in which 57 patients (52%) were subjected to radiologic investigation of the urinary tract [9]. Nearly half of them (46%) were found to have any renal abnormality such as parenchymal or calyceal cysts, calyceal clubbing and blunting, fetal lobulation, scarring, dysplastic kidneys, unilateral agenesis, vesico-ureteral reflux, horseshoe kidney and ectopic kidney. A significant percent of patients (11%) had detrusor instability requiring either continuous or intermittent self-catheterization. Six patients (four of them children) had chronic renal failure and four (two of them children) were transplanted.

In a French study of 33 young adults with Bardet Biedl syndrome 36% (12 of 33) of the patients had an eGFR < 90 ml/min per 1.73 m², while 9% (3 of 33) had eGFR between 30 and 60 ml/min per 1.73 m² [10]. Urine concentration defect after 12 hour overnight fastening was found in 63%. All patients underwent imaging studies (ultrasound in all, NMR study in 24/33) and abnormal renal development was found in 50% of the patients consisting of asymmetry, atrophy, dysplasia and cysts. Overall, renal function impairment, tubulointerstitial lesions of dysplastic type and/or impaired urinary concentration ability were evident in 82%. Although genetic testing was performed in all
patients clear genotype-phenotype correlation could not be established due to small numbers, but authors noticed that all patients with BBS10 and BBS12 mutations had more severe phenotype (CKD, metabolic syndrome) compared with carriers of BBS1 who had milder phenotype.

Deterioration of renal function in patients with BBS usually has slow, progressive course and becomes evident in adulthood. There are incidental cases of BBS patients presenting renal impairment very early in the life. Billingsley et al reported five patients with BBS without polydactyly who had early and severe renal disease and required transplantation. [11]. A Romanian boy presented with terminal uremia at the age of 4 when diagnosis of BBS was established and the patient commenced chronic peritoneal dialysis [12]. A 12 year old boy from India presented at the age of 12 with polyuria, polydypsia, anemia, and chronic kidney disease (stage 3). Detailed physical examination led to the diagnosis of BBS which had not been recognized until this admission. His renal function worsened and he underwent pre-emptive kidney transplantation [13]. An early renal failure was also reported in a 4 year boy with BBS with bilateral kidney dysplasia due to posterior urethral valves [14]. A BBS patient from Iran was also reported and he reached terminal renal failure in the first decade and required renal replacement therapy [15]. An interesting case of female with BBS and renal failure in the neonatal period was reported. The baby was born with vaginal atresia resulting in hydrometrocolpos, hydronephrosis and renal failure. After deobstruction her renal function normalized but at the end of the first decade she progressed to ESRD due to her underlying renal pathology [16].

In our series all four BBS patients presented with global/focal kidney dysplasia. One patient progressed to CKD 3. He had severe risk factors for progression of CKD such as smoking, hypertension, obesity, sedentary life style, and lack of physical activity, glucose intolerance, and abnormal lipid profile. In anecdotal reports it was shown that even diet modification and reduction of the body mass index may positively influence for preservation of renal function [17]. Unfortunately mental retardation in our patient and behavioural changes typical for adolescence lead to the non compliance with medical treatment and healthy life style. Pediatric nephrologists have great responsibility for early diagnosis of BBS and recognition of nephropathy as a cardinal feature of the disease. Transition to adult nephrology units should be done adequately without interruption of complex and multidisciplinary care of these patients.

Conclusion

Bardet–Biedl Syndrome is a rare ciliopathy associated with several features including obesity, retinopathy, renal defects, polydactyly, learning disabilities, and hypogenitalism. Children with BBS should undergo imaging studies of the kidneys and urinary tract at initial work up; in those with renal dysplasia or other structural abnormalities blood pressure, proteinuria and GFR should be regularly monitored. Close follow-up for renal impairment in patients with Bardet-Biedl syndrome from an early age is highly recommended to prevent ESRD.

REFERENCES

11. Billingsley G, Vincent A, Deveault C, Héon E. Mutational analysis of SDCCAG8 in Bardet-Biedl syn-
Renal dysplasia in bardet-biedl syndrome

Ввод: Бардет Бидл синдром (ББС) е мултисистемско наследно заболяване, което се карактеризира со централна дебелина, пигментна ретинопатия, полидактилия, ментална ретардация и хипопонадизм. Бубрежните абнормалности се сметаат за кардинална черта на болеста и имаат сериозно прогностично значение. Цел на оваа студија е да се анализира бубрежниот статус кај деца со ББС и да се спроведат соодветни мерки кај оние со прогресивен тек на болеста.

Резултати: Евидентирани се четири деца (две мачки, две женки). Сите четири деца имаа аномален ултразвучен наод на бубрезите, а Tc99mDMSA скен покажа присуство на дисплазични бубрези. Две деца имаа јасна протеинурија. Трите деца имаа нормален крвни притисок и гломеруларна филтрација (ГФ): 107, 145 и 95 мл/мин/1,73м2, додека четвртото дете имаше хипертензија и прогресивно влошување на ГФ – 65 мл/мин/1,73м2.

Заклучок: Деца со ББС треба да се подложат на радиографски студии на бубрезите на уринарниот тракт на првичната обработка; кај оние со ренална дисплазија протеинурија, ГФ и крвниот притисок редовно да се контролираат со цел да се забави прогресијата кон терминална бубрежна слабост.

Ключни зборови: Бардет Бидл синдром, бубрежна дисплазија, хронична бубрежна болест, протеинурија, хипертензија.